Spark Streaming,其实就是一种Spark提供的,对于大数据,进行实时计算的一种框架。它的底层,其实,也是基于我们之前讲解的Spark Core的。基本的计算模型,还是基于内存的大数据实时计算模型。而且,它的底层的组件或者叫做概念,其实还是最核心的RDD。
只不多,针对实时计算的特点,在RDD之上,进行了一层封装,叫做DStream。其实,学过了Spark SQL之后,你理解这种封装就容易了。之前学习Spark SQL是不是也是发现,它针对数据查询这种应用,提供了一种基于RDD之上的全新概念,DataFrame,但是,其底层还是基于RDD的。所以,RDD是整个Spark技术生态中的核心。要学好Spark在交互式查询、实时计算上的应用技术和框架,首先必须学好Spark核心编程,也就是Spark Core。
Spark Streaming 类似于 Apache Storm,用于流式数据的处理。根据其官方文档介绍,Spark Streaming 有高吞吐量和容错能力强等特点。Spark Streaming 支持的数据输入源很多,例如:Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等等。数据输入后可以用 Spark 的高度抽象,如:map、reduce、join、window 等进行运算。而结果也能保存在很多地方,如 HDFS,数据库等。另外 Spark Streaming 也能和 MLlib(机器学习)以及 Graphx 完美融合。
和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作 DStream。DStream 是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为 RDD 存在,而 DStream 是由这些 RDD 所组成的序列(因此得名“离散化”)。
DStream 可以从各种输入源创建,比如 Flume、Kafka 或者 HDFS。创建出来的 DStream 支持两种操作,一种是转化操作(transformation),会生成一个新的 DStream,另一种是输出操作(output operation),可以把数据写入外部系统中。DStream 提供了许多与 RDD 所支持的操作相类似的操作支持,还增加了与时间相关的新操作,比如滑动窗口。
DStream:Discretized Stream 离散化流
Spark Streaming提供了一种高级的抽象,叫做DStream,英文全称为Discretized Stream,中文翻译为“离散流”,它代表了一个持续不断的数据流。DStream可以通过输入数据源来创建,比如Kafka、Flume和Kinesis;也可以通过对其他DStream应用高阶函数来创建,比如map、reduce、join、window。
DStream的内部,其实一系列持续不断产生的RDD。RDD是Spark Core的核心抽象,即,不可变的,分布式的数据集。DStream中的每个RDD都包含了一个时间段内的数据。
对DStream应用的算子,比如map,其实在底层会被翻译为对DStream中每个RDD的操作。比如对一个DStream执行一个map操作,会产生一个新的DStream。但是,在底层,其实其原理为,对输入DStream中每个时间段的RDD,都应用一遍map操作,然后生成的新的RDD,即作为新的DStream中的那个时间段的一个RDD。底层的RDD的transformation操作,其实,还是由Spark Core的计算引擎来实现的。Spark Streaming对Spark Core进行了一层封装,隐藏了细节,然后对开发人员提供了方便易用的高层次的API。
public class WordCount {
public static void main(String[] args) throws Exception {
// 创建SparkConf对象
// 但是这里有一点不同,我们是要给它设置一个Master属性,但是我们测试的时候使用local模式
// local后面必须跟一个方括号,里面填写一个数字,数字代表了,我们用几个线程来执行我们的
// Spark Streaming程序
SparkConf conf=new SparkConf().setMaster("local[2]").setAppName("WordCount");
// 创建JavaStreamingContext对象
// 该对象,就类似于Spark Core中的JavaSparkContext,就类似于Spark SQL中的SQLContext
// 该对象除了接收SparkConf对象对象之外
// 还必须接收一个batch interval参数,就是说,每收集多长时间的数据,划分为一个batch,进行处理
// 这里设置一秒
JavaStreamingContext jsc=new JavaStreamingContext(conf,Duration.apply(1000));
// 首先,创建输入DStream,代表了一个从数据源(比如kafka、socket)来的持续不断的实时数据流
// 调用JavaStreamingContext的socketTextStream()方法,可以创建一个数据源为Socket网络端口的
// 数据流,JavaReceiverInputStream,代表了一个输入的DStream
// socketTextStream()方法接收两个基本参数,第一个是监听哪个主机上的端口,第二个是监听哪个端口
JavaReceiverInputDStream lines=jsc.socketTextStream("localhost",9999);
// 到这里为止,你可以理解为JavaReceiverInputDStream中的,每隔一秒,会有一个RDD,其中封装了
// 这一秒发送过来的数据
// RDD的元素类型为String,即一行一行的文本
// 所以,这里JavaReceiverInputStream的泛型类型<String>,其实就代表了它底层的RDD的泛型类型
// 开始对接收到的数据,执行计算,使用Spark Core提供的算子,执行应用在DStream中即可
// 在底层,实际上是会对DStream中的一个一个的RDD,执行我们应用在DStream上的算子
// 产生的新RDD,会作为新DStream中的RDD
JavaDStream<String> words=lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator call(String line) throws Exception {
return Arrays.asList(line.split(" ")).iterator();
}
});
// 这个时候,每秒的数据,一行一行的文本,就会被拆分为多个单词,words DStream中的RDD的元素类型
// 即为一个一个的单词
// 接着,开始进行flatMap、reduceByKey操作
JavaPairDStream<String,Integer> pairs=words.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String,Integer>(s,1);
}
});
// 这里,正好说明一下,其实大家可以看到,用Spark Streaming开发程序,和Spark Core很相像
// 唯一不同的是Spark Core中的JavaRDD、JavaPairRDD,都变成了JavaDStream、JavaPairDStream
JavaPairDStream<String,Integer> wordCounts=pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer integer, Integer integer2) throws Exception {
return integer+integer2;
}
});
// 到此为止,我们就实现了实时的wordcount程序了
// 大家总结一下思路,加深一下印象
// 每秒中发送到指定socket端口上的数据,都会被lines DStream接收到
// 然后lines DStream会把每秒的数据,也就是一行一行的文本,诸如hell world,封装为一个RDD
// 然后呢,就会对每秒中对应的RDD,执行后续的一系列的算子操作
// 比如,对lins RDD执行了flatMap之后,得到一个words RDD,作为words DStream中的一个RDD
// 以此类推,直到生成最后一个,wordCounts RDD,作为wordCounts DStream中的一个RDD
// 此时,就得到了,每秒钟发送过来的数据的单词统计
// 但是,一定要注意,Spark Streaming的计算模型,就决定了,我们必须自己来进行中间缓存的控制
// 比如写入redis等缓存
// 它的计算模型跟Storm是完全不同的,storm是自己编写的一个一个的程序,运行在节点上,相当于一个
// 一个的对象,可以自己在对象中控制缓存
// 但是Spark本身是函数式编程的计算模型,所以,比如在words或pairs DStream中,没法在实例变量中
// 进行缓存
// 此时就只能将最后计算出的wordCounts中的一个一个的RDD,写入外部的缓存,或者持久化DB
// 最后,每次计算完,都打印一下这一秒钟的单词计数情况
// 并休眠5秒钟,以便于我们测试和观察
Thread.sleep(5000);
wordCounts.print();
// 首先对JavaSteamingContext进行一下后续处理
// 必须调用JavaStreamingContext的start()方法,整个Spark Streaming Application才会启动执行
// 否则是不会执行的
jsc.start();
jsc.awaitTermination();
jsc.close();
}
}
~/bigdatasoftware/spark-2.1.3-bin-hadoop2.7/bin/spark-submit \
--class com.hzk.sparkStreaming.WordCount \
--driver-java-options "-Dspark.testing.memory=471859200" \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 512m \
--executor-cores 3 \
~/bigdatasoftware/spark-2.1.3-bin-hadoop2.7/study/SparkStudy-1.0-SNAPSHOT.jar \
如果executor-memory不够大的话,有可能会报错:Spark-submit:System memory 466092032 must be at least 471859200
运行shell脚本,且启动netcat监听:nc -lk 9999
实时计算结果如下
package com.hzk.sparkStreaming; import org.apache.spark.SparkConf; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; import java.util.Arrays; import java.util.Iterator; public class HDFSWordCount { public static void main(String[] args) throws InterruptedException { SparkConf conf = new SparkConf() .setMaster("local[2]") .setAppName("HDFSWordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5)); // 首先,使用JavaStreamingContext的textFileStream()方法,针对HDFS目录创建输入数据流 JavaDStream<String> lines = jssc.textFileStream("hdfs://hadoop-001:9000/datas"); // 执行wordcount操作 JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override public Iterator<String> call(String line) throws Exception { return Arrays.asList(line.split(" ")).iterator(); } }); JavaPairDStream<String, Integer> pairs = words.mapToPair( new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String word) throws Exception { return new Tuple2<String, Integer>(word, 1); } }); JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); wordCounts.print(); jssc.start(); jssc.awaitTermination(); jssc.close(); } }
运行shell脚本如下
~/bigdatasoftware/spark-2.1.3-bin-hadoop2.7/bin/spark-submit \
--class com.hzk.sparkStreaming.HDFSWordCount \
--driver-java-options "-Dspark.testing.memory=471859200" \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 512m \
--executor-cores 3 \
~/bigdatasoftware/spark-2.1.3-bin-hadoop2.7/study/SparkStudy-1.0-SNAPSHOT.jar \
运行shell脚本后,将文本put进hdfs
hadoop fs -put ./wc.txt /datas
结果如下
Spark Streaming 概述+DStream工作原理+与Storm对比+实时WordCount
原文:https://www.cnblogs.com/Transkai/p/11377373.html