题意:输入n个点,要求选m个点满足连接m个点的m-1条边权值和sum与点的权值和ans最小,即sum/ans最小,并输出所选的m个点,如果有多种情况就选第一个点最小的,如果第一个点也相同就选第二个点最小的........
分析:因为n<=15,所以可以暴力枚举出所选的m个点,然后对这m个点进行最小生成树求得m-1条边的最小和,然后求sum/ans即可
#include <cstdio> #include <cstring> #define maxn 15 + 5 #define inf 0x3f3f3f3f int graph[maxn][maxn], vex[maxn]; int n, m, store[maxn], vis[maxn]; double ans; bool visted[maxn]; double prim() { int minid, cnt = 0, mcost, n_vex = 0, n_edge = 0; for (int i = 1; i <= m; ++i) n_vex += vex[vis[i]]; memset(visted, 0, sizeof(visted)); visted[1] = 1; while (cnt < m - 1) { mcost = inf; for (int i = 1; i <= m; ++i) { if (!visted[i]) continue; for (int j = 1; j <= m; ++j) if (!visted[j] && graph[vis[i]][vis[j]] < mcost) { mcost = graph[vis[i]][vis[j]]; minid = j; } } if (mcost != inf) { visted[minid] = 1; n_edge += mcost; ++cnt; } } return n_edge * 1.0 / n_vex; } void dfs(int k, int id) { if(id > m){ double mcost = prim(); if(mcost - ans < -(1e-8)) //!!!! { ans = mcost; memcpy(store, vis, sizeof(vis)); } return; } for (int i = k; i <= n; ++i) { vis[id] = i; dfs(i + 1, id + 1); } } int main() { while (~scanf("%d %d", &n, &m) && (n || m)) { for (int i = 1; i <= n; ++i) scanf("%d", &vex[i]); for (int i = 1; i <= n; ++i) for (int j = 1; j <= n; ++j) scanf("%d", &graph[i][j]); ans = inf; dfs(1, 1); for (int i = 1; i <= m; ++i) if (i != m) printf("%d ", store[i]); else printf("%d\n", store[i]); } return 0; }
[HDU - 2489]Minimal Ratio Tree
原文:https://www.cnblogs.com/Vikyanite/p/11385582.html