repartition底层调用的是coalesce方法,默认shuffle
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
coalesce方法的shuffle参数默认为false,默认不shuffle
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null) : RDD[T] = withScope { if (shuffle) { /** Distributes elements evenly across output partitions, starting from a random partition. */ val distributePartition = (index: Int, items: Iterator[T]) => { var position = (new Random(index)).nextInt(numPartitions) items.map { t => // Note that the hash code of the key will just be the key itself. The HashPartitioner // will mod it with the number of total partitions. position = position + 1 (position, t) } } : Iterator[(Int, T)] // include a shuffle step so that our upstream tasks are still distributed new CoalescedRDD( new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition), new HashPartitioner(numPartitions)), numPartitions).values } else { new CoalescedRDD(this, numPartitions) } }
如果你减少分区数,考虑使用coalesce,这样可以避免执行shuffle。但是假如内存不够用,可能会引起内存溢出。
spark coalesce和repartition的区别和使用场景
原文:https://www.cnblogs.com/Alcesttt/p/11386049.html