更复杂些的滤波算子一般是先利用高斯滤波来平滑,然后计算其1阶和2阶微分。由于它们滤除高频和低频,因此称为带通滤波器(band-pass filters)。
在介绍具体的带通滤波器前,先介绍必备的图像微分知识。
对于离散情况(图像),其导数必须用差分方差来近似,有
,前向差分 forward differencing (1.2)
,中心差分 central differencing (1.3)
1)前向差分的Matlab实现
123456789101112131415161718192021222324252627function dimg = mipforwarddiff(img,direction)
% MIPFORWARDDIFF Finite difference calculations
%
% DIMG = MIPFORWARDDIFF(IMG,DIRECTION)
%
% Calculates the forward-difference
for
a given direction
% IMG : input image
% DIRECTION :
‘dx‘
or
‘dy‘
% DIMG : resultant image
%
% See also MIPCENTRALDIFF MIPBACKWARDDIFF MIPSECONDDERIV
% MIPSECONDPARTIALDERIV
% Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06
% Medical Image Processing Toolbox
imgPad = padarray(img,[1 1],
‘symmetric‘
,
‘both‘
);%将原图像的边界扩展
[row,col] = size(imgPad);
dimg = zeros(row,col);
switch
(direction)
case
‘dx‘
,
dimg(:,1:col-1) = imgPad(:,2:col)-imgPad(:,1:col-1);%x方向差分计算,
case
‘dy‘
,
dimg(1:row-1,:) = imgPad(2:row,:)-imgPad(1:row-1,:);
otherwise, disp(
‘Direction is unknown‘
);
end;
dimg = dimg(2:end-1,2:end-1);
2)中心差分的Matlab实现
12345678910111213141516171819202122232425262728function dimg = mipcentraldiff(img,direction)
% MIPCENTRALDIFF Finite difference calculations
%
% DIMG = MIPCENTRALDIFF(IMG,DIRECTION)
%
% Calculates the central-difference
for
a given direction
% IMG : input image
% DIRECTION :
‘dx‘
or
‘dy‘
% DIMG : resultant image
%
% See also MIPFORWARDDIFF MIPBACKWARDDIFF MIPSECONDDERIV
% MIPSECONDPARTIALDERIV
% Omer Demirkaya, Musa Asyali, Prasana Shaoo, ... 9/1/06
% Medical Image Processing Toolbox
img = padarray(img,[1 1],
‘symmetric‘
,
‘both‘
);
[row,col] = size(img);
dimg = zeros(row,col);
switch
(direction)
case
‘dx‘
,
dimg(:,2:col-1) = (img(:,3:col)-img(:,1:col-2))/2;
case
‘dy‘
,
dimg(2:row-1,:) = (img(3:row,:)-img(1:row-2,:))/2;
otherwise,
disp(
‘Direction is unknown‘
);
end
dimg = dimg(2:end-1,2:end-1);
1
实例:技术图像x方向导数
12I = imread(
‘coins.png‘
); figure; imshow(I);
Id = mipforwarddiff(I,
‘dx‘
); figure, imshow(Id);
原图像 x方向1阶导数
图像I的梯度定义为 ,其幅值为 。出于计算性能考虑,幅值也可用 来近似。
Matlab函数
1)gradient:梯度计算
2)quiver:以箭头形状绘制梯度。注意放大下面最右侧图可看到箭头,由于这里计算横竖两个方向的梯度,因此箭头方向都是水平或垂直的。
实例:仍采用上面的原始图像
12345I =
double
(imread(
‘coins.png‘
));
[dx,dy]=gradient(I);
magnitudeI=sqrt(dx.^2+dy.^2);
figure;imagesc(magnitudeI);colormap(gray);%梯度幅值
hold
on
;quiver(dx,dy);%叠加梯度方向
梯度幅值 梯度幅值+梯度方向
拉普拉斯算子是n维欧式空间的一个二阶微分算子。它定义为两个梯度向量算子的内积
其在二维空间上的公式为: (3.3)
对于1维离散情况,其二阶导数变为二阶差分
2)因此,二阶差分为
对于2维离散情况(图像),拉普拉斯算子是2个维上二阶差分的和(见式3.3),其公式为:
上式对应的卷积核为
常用的拉普拉斯核有:
拉普拉斯算子会突出像素值快速变化的区域,因此常用于边缘检测。
Matlab里有两个函数
1)del2
2)fspecial:图像处理中一般利用Matlab函数fspecial
h = fspecial(‘laplacian‘, alpha) returns a 3-by-3 filter approximating the shape of the two-dimensional Laplacian operator.
The parameter alpha controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The default value for alpha is 0.2.
http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html (非常清晰的Laplacian Operator介绍,本文的主要参考)
http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
图像处理-线性滤波-2 图像微分(1、2阶导数和拉普拉斯算子),布布扣,bubuko.com
图像处理-线性滤波-2 图像微分(1、2阶导数和拉普拉斯算子)
原文:http://www.cnblogs.com/pengkunfan/p/3916766.html