首页 > 其他 > 详细

Point-wise Mutual Information

时间:2019-08-24 15:47:07      阅读:152      评论:0      收藏:0      [点我收藏+]

Point-wise Mutual Information

(Yao, et al 2019) reclaimed a clear description of Point-wise Mutual Information as below:
\[ PMI(i, j) = \log \frac{p(i,j)}{p(i)p(j)} \p(i, j) = \frac{\#(i,j)}{\#W} \p(i) = \frac{\#(i)}{\#W} \]
where \(\#(i)\) is the number of sliding windows in a corpus hat contain word \(i\)

where \(\#(i,j)\) is the number of sliding windows that contain both word \(i\) and \(j\)

where \(\#W\) is the total number of sliding windows in the corpus.

(Levy, et al 2014) simplified PMI formula as below:
\[ PMI(i,j) = \log\frac{\#(i,j)\#W}{\#(i)\#(j)} \]

Obviously, \(\#W\) is a constant if we fixed slide window size and corpus, hence we can further simplify the formula as below:
\[ PMI(i, j) = \log\frac{\#(i,j)}{\#(i)\#(j)} \]

References

Liang Yao, et al, 2019. Graph Convolutional Networks for Text Classification. AAAI

Omer Levy, et al, 2014. NeuralWord Embedding as Implicit Matrix Factorization. NIPS

Point-wise Mutual Information

原文:https://www.cnblogs.com/fengyubo/p/11404515.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!