首页 > 其他 > 详细

字典树的介绍

时间:2019-08-27 21:48:36      阅读:101      评论:0      收藏:0      [点我收藏+]

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_39778570/article/details/81990417

以下博文内容复制于上述链接,格式以及内容稍微有变动

什么是字典树?

  • 叫前缀树更容易理解
  • 字典树的样子 

技术分享图片

    Trie又被称为前缀树、字典树,所以当然是一棵树。上面这棵Trie树包含的字符串集合是{in, inn, int, tea, ten, to}。每个节点

的编号是我们为了描述方便加上去的。树中的每一条边上都标识有一个字符。这些字符可以是任意一个字符集中的字符。比如对于都

是小写字母的字符串,字符集就是’a’-‘z’;对于都是数字的字符串,字符集就是’0’-‘9’;对于二进制字符串,字符集就是0和1。

    比如上图中3号节点对应的路径0123上的字符串是inn,8号节点对应的路径0568上的字符串是ten。终结点与集合中的字符串

是一一对应的。

原理

    下面我们来讲一下对于给定的字符串集合{W1, W2, W3, … WN}如何创建对应的Trie树。其实上Trie树的创建是从只有根节点

开始,通过依次将W1, W2, W3, … WN插入Trie中实现的。所以关键就是之前提到的Trie的插入操作。 具体来说,Trie一般支持两个操作: 

1. Trie.insert(W):第一个操作是插入操作,就是将一个字符串W加入到集合中。
2. Trie.search(S):第二个操作是查询操作,就是查询一个字符串S是不是在集合中。

    假设我们要插入字符串”in”。我们一开始位于根,也就是0号节点,我们用P=0表示。我们先看P是不是有一条标识着i的连向子节点

的边。没有这条边,于是我们就新建一个节点,也就是1号节点,然后把1号节点设置为P也就是0号节点的子节点,并且将边标识为i。

最后我们移动到1号节点,也就是令P=1。
技术分享图片

    这样我们就把”in”的i字符插入到Trie中了。然后我们再插入字符n,也是先找P也就是1号节点有没有标记为n的边。还是没有,

于是再新建一个节点2,设置为P也就是1号节点的子节点,并且把边标识为n。最后再移动到P=2。这样我们就把n也插入了。由于n是

”in”的最后一个字符,所以我们还需要将P=2这个节点标记为终结点。 

技术分享图片

    现在我们再插入字符串”inn”。过程也是一样的,从P=0开始找标识为i的边,这次找到1号节点。于是我们就不用创建新节点了,

直接移动到1号节点,也就是令P=1。再插入字符n,也是有2号节点存在,所以移动到2号节点,P=2。最后再插入字符n这时P没有标识

为n的边了,所以新建3号节点作为2号节点的子节点,边标识为n,同时将3号节点标记为终结点:

技术分享图片

 


将后面的字符串int tea ten to都插入之后,就得到了我们一开始给出的Trie: 

技术分享图片


       下面我们再讲一下如何查询Trie树中是不是包含字符串S,也就是之前提到的查找操作。查找其实比较简单。我们只要从根节点开始,

沿着标识着S[1] -> S[2] -> S[3] … -> S[S.len]的边移动,如果最后成功到达一个终结点,就说明S在Trie树中;如果最后无路可走,或者到

达一个不是终结点的节点,就说明S不在Trie树中。

       如果是查找”te”,就会从0开始经过5最后到达6。但是6不是终结点,所以te没在Trie树中。如果查找的是”too”,就会从0开始经过5和9,

然后发现之后无路可走:9号节点没有标记为o的边连出去。所以too也不在Trie中。

 技术分享图片

 

字典树的介绍

原文:https://www.cnblogs.com/gn1314/p/11420779.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!