首页 > 其他 > 详细

SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

时间:2019-08-28 23:38:15      阅读:69      评论:0      收藏:0      [点我收藏+]

题意:

有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点。

思路:

按题意研究一下就会发现题目所求为\(\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^ngcd(i,j,k)==1\),那么我们定义\(f(n)\)\(gcd(i,j,k)==n\)的对数,\(F(n)\)\(gcd(i,j,k)\)\(n\)倍数的对数,显然\(F(n)\)比较容易求,那么可得\(f(1)=\sum_{1|d}\mu(\frac{d}{1})F(d)\)

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;

int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
    memset(vis, 0, sizeof(vis));
    memset(mu, 0, sizeof(mu));
    cnt = 0;
    mu[1] = 1;
    for(int i = 2; i <= n; i++) {
        if(!vis[i]){
            prime[cnt++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < cnt && prime[j] * i <= n; j++){
            vis[prime[j] * i] = 1;
            if(i % prime[j] == 0) break;
            mu[i * prime[j]] = -mu[i];
        }
    }
}
ll get(int n){
    return 1LL * n * n * n + 3LL * n * n + 3LL * n;
}
int main(){
    int n, T;
    getmu(1000000);
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        ll ans = 0;
        for(int i = 1; i <= n; i++){
            ans += 1LL * mu[i] * get(n / i);
        }
        printf("%lld\n", ans);
    }
    return 0;
}

SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

原文:https://www.cnblogs.com/KirinSB/p/11427046.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!