首页 > 其他 > 详细

暑假D25

时间:2019-08-29 22:51:49      阅读:107      评论:0      收藏:0      [点我收藏+]

Clique

数轴上有n个点,第i个点的坐标为xi,权值为wi两个点i,j之间存在一条边当且仅当$abs(x_{i}-x_{j})>=w_{i}+w{j}$,求这张图的最大团的点数(团就是两两之间有边的顶点集合)

1<=n<=2e5,0<=|xi|,wi<=1e9

题解

根据qjx学姐上次考试讲的那道题的启发,可以知道两个有边就是他们的区间不相交(可以有一点相交),那么我们选出一些互不相交的区间,就代表这些区间形成团,

那么问题就变成了,给出n个区间要求选最多的区间且他们互不相交。这个就贪心就好了,按右端点排序,遍历一遍就好了。

不过结果只有90pts,因为w可以为0,那么就可能有这样两个区间(1,2),(2,2),本来两个都可以取到,但如果(2,2)在前面那么就只能取一个。这是因为这道题并不是严格不相交

技术分享图片
#include<bits/stdc++.h>
using namespace std;

const int maxn=200005;
int n;
struct point{
    int l,r;
}a[maxn];

template<class T>inline void read(T &x){
    x=0;int f=0;char ch=getchar();
    while(!isdigit(ch)) {f|=(ch==-);ch=getchar();}
    while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    x= f ? -x : x ;
}

bool cmp(point a,point b){
    if(a.r!=b.r) return a.r<b.r;
    return a.l<b.l;
}

int main(){
    freopen("clique.in","r",stdin);
    freopen("clique.out","w",stdout);
    read(n);
    for(int i=1;i<=n;i++){
        int x,w;
        read(x);read(w);
        a[i]=(point){x-w,x+w};
    }
    sort(a+1,a+n+1,cmp);
    int ans=1,now=a[1].r;
    for(int i=2;i<=n;i++)
      if(now<=a[i].l){
           ans++;
           now=a[i].r;
      }
    printf("%d",ans);
}
clique

Mod

给出一个序列,有三种操作:将[l,r]的数对x取模,求[l,r]的区间和,将a[x]改成y

1<=n,m<=1e5,0<=a[i],x,y<=1e9

题解

要求区间和就用线段树维护即可。取模直接暴力,对于需要取模的地方单点修改,需要修改的地方就是值大于x的地方。操作3就单链修改。

考虑为什么暴力对:一个数取一次模至少减小一半,如果mod<x/2,那么取模之后x<mod<x/2;如果mod>x/2,那么x=x-mod<x/2。

所以一个数最多被修改log次,而且我可以通过区间最大值判断去掉不必要的取模。

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=200005;
int n,m,cnt,a[maxn];
int root,ls[maxn<<1],rs[maxn<<1],mx[maxn<<1];
ll sum[maxn<<1];

template<class T>inline void read(T &x){
    x=0;int f=0;char ch=getchar();
    while(!isdigit(ch)) {f|=(ch==-);ch=getchar();}
    while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
    x= f ? -x : x ;
}

void update(int rt){
    sum[rt]=sum[ls[rt]]+sum[rs[rt]];
    mx[rt]=max(mx[ls[rt]],mx[rs[rt]]);
}

void build(int &rt,int l,int r){
    rt=++cnt;
    if(l==r){
        sum[rt]=mx[rt]=a[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(ls[rt],l,mid);
    build(rs[rt],mid+1,r);
    update(rt);
}

ll query(int rt,int l,int r,int a_l,int a_r){
    if(a_l<=l&&r<=a_r) return sum[rt];
    int mid=(l+r)>>1;
    ll ret=0;
    if(a_l<=mid) ret+=query(ls[rt],l,mid,a_l,a_r);
    if(mid<a_r) ret+=query(rs[rt],mid+1,r,a_l,a_r);
    return ret;
}

void modifymod(int rt,int l,int r,int a_l,int a_r,int mod){
    if(mx[rt]<mod) return ;
    if(l==r){
        mx[rt]=sum[rt]=mx[rt]%mod;
        return ;
    }
    int mid=(l+r)>>1;
    if(a_l<=mid) modifymod(ls[rt],l,mid,a_l,a_r,mod);
    if(mid<a_r) modifymod(rs[rt],mid+1,r,a_l,a_r,mod);
    update(rt);
}

void modify(int rt,int l,int r,int pos,int val){
    if(l==r){
        mx[rt]=sum[rt]=val;
        return ;
    }
    int mid=(l+r)>>1;
    if(pos<=mid) modify(ls[rt],l,mid,pos,val);
    else modify(rs[rt],mid+1,r,pos,val);
    update(rt);
}

int main(){
    freopen("mod.in","r",stdin);
    freopen("mod.out","w",stdout);
    read(n);read(m);
    for(int i=1;i<=n;i++) read(a[i]);
    build(root,1,n);
    while(m--){
        int opt;
        read(opt);
        if(opt==1){
            int l,r;
            read(l);read(r);
            printf("%lld\n",query(1,1,n,l,r));
        }
        else if(opt==2){
            int l,r,mod;
            read(l);read(r);read(mod);
            modifymod(1,1,n,l,r,mod);
        }
        else{
            int pos,val;
            read(pos);read(val);
            modify(1,1,n,pos,val);
        }
    }
}
mod

Number

给定 整数 m,k,求出正整数n使得 n+1,n+2,...,2n中恰好有中恰好有m个数在二进制下恰好有k个1。有多组数据。有多组数据。

每组数据输出一行两个整数 ,第一个整数表示longlong范围内任意一个满足条件的满足条件的n,第二个数表示满足条件的n的个数 无穷多用-1表示)。保证 10^18以内存在满足条件的n。

对于100%的数据,t<= 2000 ,0<=m <=10^18 ,1<=k<=64。

题解

首先可以打表看出随着n的增大,有k的1的数是不减的。

设f(n,k)为0-n之间二进制下有k个1的数的个数,那么n+1,...2*n中有k个1的数个数就是f(2*n,k)-f(n,k)。

将1-n的数都*2,这时这些数的1的个数不会改变,那么f(2*n,k)-f(n,k)= 0-2*n之间满足条件的奇数,因为偶数都被d(n,k)抵消了。(对于每一个满足条件的偶数/2都在0-n那么他们就在f(n,k)中)

对于单调性的证明:从刚才的结论继续,这些奇数-1后再/2那么就有k-1个1,而且都在0-n-1,因为奇数最多在2*n-1,那么f(2*n,k)-f(n,k)=f(n-1,k),这个显然不递减。

有单调性又因为恰有k个所以满足条件的一定在一段连续区间,就分别二分求出两个边界。

考虑check,f(n,k)是从0-n判断,考虑像数位DP那样dfs,不过我们可以用组合数优化,我们保持一直处于压位状态,那么如果当前位能填1就dfs(pos-1,k-1)+c[pos][k],c[pos][k]就是从后面pos位选k个填1.注意这里pos记为当前位后面有多少位。

还有二分边界要注意。

技术分享图片
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=63;
int t,k;
ll m;
ll c[66][66];

void init(){
    c[0][0]=1;
    for(int i=1;i<=maxn;i++){
        c[i][0]=c[i][i]=1;
        for(int j=1;j<i;j++)
         c[i][j]=c[i-1][j]+c[i-1][j-1];
    }
}

ll dfs(ll x,int pos,int kk){//pos:这位后面还有多少位  在任何时刻保持压位 
    if(!kk) return 1;
    if(pos<0) return 0;
    int p=(x>>pos)&1;
    if(p) return dfs(x,pos-1,kk-1)+c[pos][kk];//c:当这位填0从后面pos位中选kk位为1 
    else return dfs(x,pos-1,kk);
}

ll get(ll x){
    return dfs(2*x,maxn,k)-dfs(x,maxn,k);
}

void cx(){
    ll l=1,r=2e18,ans1,ans2;
    while(l<=r){
        ll mid=(l+r)>>1;
        if(get(mid)>=m) r=mid-1,ans1=mid;
        else l=mid+1;
    }
    l=1,r=2e18;
    while(l<=r){
        ll mid=(l+r)>>1;
        if(get(mid)<=m) l=mid+1,ans2=mid;
        else r=mid-1;
    }
    printf("%lld %lld\n",ans1,ans2-ans1+1);
}

int main(){
    freopen("number.in","r",stdin);
    freopen("number.out","w",stdout);
    init();
    scanf("%d",&t);
    while(t--){
        scanf("%lld%d",&m,&k);
        if(m==0){printf("1 %lld\n",((ll)1<<(k-1))-1);continue;}
        if(k==1) {printf("4 -1\n");continue;}
        cx();
    }
}
number

 

暑假D25

原文:https://www.cnblogs.com/sto324/p/11432033.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!