当二叉树在某些情况下退化为类单链表时,它的查找、插入、删除运算复杂度将不再是O(logN)),解决问题的方法就是尽量维持树的平衡。节点的平衡因子定义为左子树高度减去右子树高度,AVL树中每个节点平衡因子为0,1,-1;
具体代码:
1 #include<iostream> 2 #include<stack> 3 using namespace std; 4 5 template<class T> 6 class avlTree 7 { 8 struct avlNode 9 { 10 T data; 11 avlNode *left; 12 avlNode *right; 13 int height; 14 15 avlNode(const T &element,avlNode *lt,avlNode *rt,int h=0) 16 :data(element),left(lt),right(rt),height(h) 17 {} 18 }; 19 20 avlNode *root; 21 22 private: 23 void insert(const T &x,avlNode *&t); 24 bool remove(const T &x,avlNode *&t); 25 int heightNode(avlNode *&t) 26 { 27 //return t==NULL? -1:t->height; 28 if(t==NULL) 29 return 0; 30 else 31 { 32 int lh=heightNode(t->left); 33 int rh=heightNode(t->right); 34 return 1+(lh>rh ? lh:rh); 35 } 36 } 37 void LL(avlNode *&t); 38 void LR(avlNode *&t); 39 void RL(avlNode *&t); 40 void RR(avlNode *&t); 41 void makeEmpty(avlNode *&t); 42 void preOrder(avlNode *&t); 43 void midOrder(avlNode *&t); 44 int max(int a,int b) 45 { 46 return a>b ? a:b; 47 } 48 public: 49 avlTree(avlNode *t=NULL) 50 { 51 root=t; 52 } 53 ~avlTree() 54 { 55 makeEmpty(root); 56 } 57 void insert(const T &x) 58 { 59 insert(x,root); 60 } 61 void remove(const T &x) 62 { 63 remove(x,root); 64 } 65 void preOrder() 66 { 67 preOrder(root); 68 } 69 void midOrder() 70 { 71 midOrder(root); 72 } 73 }; 74 75 //单旋转:左子树比右子树高,插入发生在左儿子左子树 76 template<class T> 77 void avlTree<T>::LL(avlNode*&t) 78 { 79 avlNode *p=t->left; 80 81 t->left=p->right; 82 p->right=t; 83 84 t->height=max(heightNode(t->left),heightNode(t->right))+1; 85 p->height=max(heightNode(p->left),t->height)+1; 86 87 t=p; 88 } 89 90 template<class T> 91 void avlTree<T>::RR(avlNode *&t) 92 { 93 avlNode *p=t->right; 94 95 t->right=p->left; 96 p->left=t; 97 98 t->height=max(heightNode(t->left),heightNode(t->right))+1; 99 p->height=max(heightNode(p->right),t->height)+1; 100 101 t=p; 102 } 103 104 //双旋转:左子树比右子树高,插入发生在左儿子右子树 105 template<class T> 106 void avlTree<T>::LR(avlNode *&t) 107 { 108 RR(t->left); 109 LL(t); 110 } 111 112 template<class T> 113 void avlTree<T>::RL(avlNode *&t) 114 { 115 LL(t->right); 116 RR(t); 117 } 118 119 template<class T> 120 void avlTree<T>::insert(const T &x,avlNode *&t) 121 { 122 if(t==NULL) 123 t=new avlNode(x,NULL,NULL); 124 //不同插入方式对应不同旋转形式 125 else if(x<t->data) 126 { 127 insert(x,t->left); 128 if(heightNode(t->left)-heightNode(t->right)==2) 129 { 130 if(x<t->left->data) 131 LL(t); 132 else 133 LR(t); 134 } 135 } 136 else if(x>t->data) 137 { 138 insert(x,t->right); 139 if(heightNode(t->right)-heightNode(t->left)==2) 140 { 141 if(x>t->right->data) 142 RR(t); 143 else 144 RL(t); 145 } 146 } 147 148 t->height=max(heightNode(t->left),heightNode(t->right))+1; 149 } 150 151 template<class T> 152 bool avlTree<T>::remove(const T &x,avlNode *&t) 153 { 154 //是否需要停止调整 155 bool stop=false; 156 //1:删除在左子树上 2:删除在右子树上 157 int subTree; 158 159 if(t==NULL) 160 return true; 161 if(x<t->data) 162 { 163 stop=remove(x,t->left); 164 subTree=1; 165 } 166 else if(x>t->data) 167 { 168 stop=remove(x,t->right); 169 subTree=2; 170 } 171 else if(t->left!=NULL&&t->right!=NULL) 172 { 173 //右子树最小节点为替代结点 174 avlNode *tmp=t->right; 175 while(tmp->left!=NULL) 176 tmp=tmp->left; 177 t->data=tmp->data; 178 stop=remove(t->data,t->right); 179 subTree=2; 180 } 181 else 182 { 183 avlNode *oldNode=t; 184 t=(t->left==NULL) ? t->right:t->left; 185 delete oldNode; 186 return false; 187 } 188 189 if(stop) 190 return true; 191 192 //删除前t平衡因子 193 int bf; 194 195 switch(subTree) 196 { 197 case 1: 198 { 199 bf=heightNode(t->left)-heightNode(t->right)+1; 200 //删除前结点平衡因子为0,不影响父节点平衡因子,不需调整 201 if(bf==0) 202 return true; 203 //从较高子树删除一个结点,影响父节点平衡因子,需要调整 204 else if(bf==1) 205 return false; 206 //从较矮子树删除一个结点,需调整 207 //根据较高子树根节点平衡因子分情况 208 else if(bf==-1) 209 { 210 int bfr=heightNode(t->right->left)-heightNode(t->right->right); 211 switch(bfr) 212 { 213 case 0: 214 { 215 RR(t); 216 return true; 217 } 218 case -1: 219 { 220 RR(t); 221 return false; 222 } 223 default: 224 { 225 RL(t); 226 return false; 227 } 228 } 229 } 230 break; 231 } 232 case 2: 233 { 234 bf=heightNode(t->left)-heightNode(t->right)-1; 235 if(bf==0) 236 return true; 237 else if(bf==-1) 238 return false; 239 else if(bf==1) 240 { 241 int bfl=heightNode(t->left->left)-heightNode(t->left->right); 242 switch(bfl) 243 { 244 case 0: 245 { 246 LL(t); 247 return true; 248 } 249 case 1: 250 { 251 LL(t); 252 return false; 253 } 254 case -1: 255 { 256 LR(t); 257 return false; 258 } 259 } 260 } 261 } 262 } 263 } 264 265 template<class T> 266 void avlTree<T>::makeEmpty(avlNode *&t) 267 { 268 if(t->left!=NULL) 269 makeEmpty(t->left); 270 if(t->right!=NULL) 271 makeEmpty(t->right); 272 delete t; 273 } 274 275 template<class T> 276 void avlTree<T>::preOrder(avlNode *&t) 277 { 278 stack<avlNode *>s; 279 280 avlNode *current; 281 s.push(t); 282 283 while(!s.empty()) 284 { 285 current=s.top(); 286 cout<<current->data<<‘:‘<<heightNode(current->left)-heightNode(current->right)<<ends; 287 s.pop(); 288 if(current->right!=NULL) 289 s.push(current->right); 290 if(current->left!=NULL) 291 s.push(current->left); 292 } 293 } 294 295 template<class T> 296 void avlTree<T>::midOrder(avlNode *&t) 297 { 298 if(t) 299 { 300 midOrder(t->left); 301 cout<<t->data<<‘:‘<<heightNode(t->left)-heightNode(t->right)<<ends; 302 midOrder(t->right); 303 } 304 } 305 306 int main() 307 { 308 avlTree<int>tree; 309 310 int a[]={10,8,6,21,7,56,43,22,98,2}; 311 //int a[3]={2,1,3}; 312 for(int i=0;i<9;++i) 313 tree.insert(a[i]); 314 315 cout<<"the preOrder traversal of the tree(with balance factor):"<<endl; 316 tree.preOrder(); 317 cout<<endl; 318 cout<<"the midOrder traversal of the tree(with balance factor):"<<endl; 319 tree.midOrder(); 320 cout<<endl; 321 322 tree.remove(8); 323 cout<<endl; 324 325 cout<<"the preOrder traversal of the tree(with balance factor) after remove 8:"<<endl; 326 tree.preOrder(); 327 cout<<endl; 328 cout<<"the midOrder traversal of the tree(with balance factor) after remove 8:"<<endl; 329 tree.midOrder(); 330 331 return 0; 332 }
运行结果:
原文:http://www.cnblogs.com/chengyuz/p/3917867.html