首页 > 其他 > 详细

2 Main Layout Conventions of Matrix Calculus

时间:2019-08-30 16:25:36      阅读:66      评论:0      收藏:0      [点我收藏+]

考虑 \(x\), \(y\) 分别是 \(n\), \(m\) 维列向量, \(A\)\(m\times n\) 矩阵, \(z\) 是标量.

Numerator Layout

想象分子不变, 分母转置.

Vector by vector 符合直观. Jacobian.

\[ \frac{\partial y}{\partial x} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_1}{\partial x_n}\\vdots & \ddots &\vdots\\frac{\partial y_m}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \]

Scalar by matrix 要做一次转置, 不舒服.

\[ \frac{\partial z}{\partial A}= \begin{pmatrix} \frac{\partial z}{\partial a_{11}} & \dots & \frac{\partial z}{\partial a_{m1}}\\vdots & \ddots &\vdots\\frac{\partial z}{\partial a_{1n}} & \dots & \frac{\partial z}{\partial a_{mn}} \end{pmatrix} \]

Chain rule 符合直观.

\[ \frac{\partial f\circ g}{\partial x} = \frac{\partial f}{\partial g}\frac{\partial g}{\partial x} \]

Denominator Layout

想象分母不变, 分子转置.

Vector by vector 不舒服. Hessian.

\[ \frac{\partial y}{\partial x} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \frac{\partial y_m}{\partial x_1}\\vdots & \ddots &\vdots\\frac{\partial y_1}{\partial x_n} & \dots & \frac{\partial y_m}{\partial x_n} \end{pmatrix} \]

Scalar by matrix 舒服.

\[ \frac{\partial z}{\partial A}= \begin{pmatrix} \frac{\partial z}{\partial a_{11}} & \dots & \frac{\partial z}{\partial a_{1n}}\\vdots & \ddots &\vdots\\frac{\partial z}{\partial a_{m1}} & \dots & \frac{\partial z}{\partial a_{mn}} \end{pmatrix} \]

Chain rule "倒过来" 了, 不舒服.

\[ \frac{\partial f\circ g}{\partial x} = \frac{\partial g}{\partial x}\frac{\partial f}{\partial g} \]

混用

混用现象很常见. 比如 CS224n, 主体是采用 numerator layout, 但是 scalar by matrix 时是不转置的.

2 Main Layout Conventions of Matrix Calculus

原文:https://www.cnblogs.com/shiina922/p/11435371.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!