首页 > 其他 > 详细

Django ORM 高性能查询优化

时间:2019-08-31 09:06:52      阅读:57      评论:0      收藏:0      [点我收藏+]

Django ORM 高性能查询优化

一、QuerySet

1、可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMITOFFSET 子句。

>>> Entry.objects.all()[:5]      # (LIMIT 5)
>>> Entry.objects.all()[5:10]    # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。


2、可迭代

articleList=models.Article.objects.all()

for article in articleList:
    print(article.title)


3、惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

queryResult=models.Article.objects.all() # not hits database
 
print(queryResult) # hits database
 
for article in queryResult:
    print(article.title)    # hits database

一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值


4、缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

print([a.title for a in models.Article.objects.all()])
print([a.create_time for a in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:

queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注:简单地打印查询集不会填充缓存。

queryResult=models.Article.objects.all()
print(queryResult) #  hits database
print(queryResult) #  hits database


二、exists()与iterator()方法

1、exists

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

 if queryResult.exists():
    #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
        print("exists...")

2、iterator

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
    print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
    print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。


三、查询优化

1、select_related(基于连表查询)

  1. 简单使用

    对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。

    select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。

    简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。

    下面的例子解释了普通查询和select_related() 查询的区别。

    查询id=2的文章的分类名称,下面是一个标准的查询:

    # Hits the database.
    article = models.Article.objects.get(nid=2)
    # Hits the database again to get the related Blog object.
    print(article.category.title)

    对应SQL:

    SELECT
        "blog_article"."nid",
        "blog_article"."title",
        "blog_article"."desc",
        "blog_article"."read_count",
        "blog_article"."comment_count",
        "blog_article"."up_count",
        "blog_article"."down_count",
        "blog_article"."category_id",
        "blog_article"."create_time",
         "blog_article"."blog_id",
         "blog_article"."article_type_id"
                 FROM "blog_article"
                 WHERE "blog_article"."nid" = 2; args=(2,)
    
    SELECT
         "blog_category"."nid",
         "blog_category"."title",
         "blog_category"."blog_id"
                  FROM "blog_category"
                  WHERE "blog_category"."nid" = 4; args=(4,)

    如果我们使用select_related()函数:

    articleList=models.Article.objects.select_related("category").all()
        for article_obj in articleList:
            #  Doesn't hit the database, because article_obj.category
            #  has been prepopulated in the previous query.
            print(article_obj.category.title)

    对应SQL:

    SELECT
         "blog_article"."nid",
         "blog_article"."title",
         "blog_article"."desc",
         "blog_article"."read_count",
         "blog_article"."comment_count",
         "blog_article"."up_count",
         "blog_article"."down_count",
         "blog_article"."category_id",
         "blog_article"."create_time",
         "blog_article"."blog_id",
         "blog_article"."article_type_id",
    
         "blog_category"."nid",
         "blog_category"."title",
         "blog_category"."blog_id"
    
    FROM "blog_article"
    LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");


  2. 多外键查询

    这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:

    article=models.Article.objects.select_related("category").get(nid=1)
    print(article.articledetail)

    观察logging结果,发现依然需要查询两次,所以需要改为:

    article=models.Article.objects.select_related("category","articledetail").get(nid=1)
    print(article.articledetail)

    或者:

    article=models.Article.objects
                 .select_related("category")
                 .select_related("articledetail")
                 .get(nid=1)  # django 1.7 支持链式操作
    print(article.articledetail)

    对应SQL:

    SELECT
    
        "blog_article"."nid",
        "blog_article"."title",
        ......
    
        "blog_category"."nid",
        "blog_category"."title",
        "blog_category"."blog_id",
    
        "blog_articledetail"."nid",
        "blog_articledetail"."content",
        "blog_articledetail"."article_id"
    
       FROM "blog_article"
       LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid")
       LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id")
       WHERE "blog_article"."nid" = 1; args=(1,)


  3. 深层查询

    # 查询id=1的文章的用户姓名
    
        article=models.Article.objects.select_related("blog").get(nid=1)
        print(article.blog.user.username)

    这是因为第一次查询没有query到userInfo表,所以,修改如下:

    article=models.Article.objects.select_related("blog__user").get(nid=1)
    print(article.blog.user.username)

    对应SQL:

    SELECT
    
    "blog_article"."nid", "blog_article"."title",
    ......
    
     "blog_blog"."nid", "blog_blog"."title",
    ......
    
     "blog_userinfo"."password", "blog_userinfo"."last_login",
    ......
    
    FROM "blog_article"
    
    INNER JOIN "blog_blog" ON ("blog_article"."blog_id" = "blog_blog"."nid")
    
    INNER JOIN "blog_userinfo" ON ("blog_blog"."user_id" = "blog_userinfo"."nid")
    WHERE "blog_article"."nid" = 1;


  4. 总结

    • select_related主要针一对一和多对一关系进行优化。
    • select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
    • 可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。
    • 没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
    • 也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
    • 也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
    • Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。


2、prefetch_related(基于子查询)

对于多对多字段(ManyToManyField)和一对多字段,可以使用prefetch_related()来进行优化。

prefetch_related()和select_related()的设计目的很相似,都是为了减少SQL查询的数量,但是实现的方式不一样。后者是通过JOIN语句,在SQL查询内解决问题。但是对于多对多关系,使用SQL语句解决就显得有些不太明智,因为JOIN得到的表将会很长,会导致SQL语句运行时间的增加和内存占用的增加。若有n个对象,每个对象的多对多字段对应Mi条,就会生成Σ(n)Mi 行的结果表。

prefetch_related()的解决方法是,分别查询每个表,然后用Python处理他们之间的关系。

# 查询所有文章关联的所有标签
    article_obj=models.Article.objects.all()
    for i in article_obj:
        print(i.tags.all())  #4篇文章: hits database 5

改为prefetch_related:

# 查询所有文章关联的所有标签
    article_obj=models.Article.objects.prefetch_related("tags").all()
    for i in article_obj:
        print(i.tags.all())  #4篇文章: hits database 2

对应SQL:

SELECT "blog_article"."nid",
               "blog_article"."title",
               ......
 
FROM "blog_article";
 
 
 
SELECT
  ("blog_article2tag"."article_id") AS "_prefetch_related_val_article_id",
  "blog_tag"."nid",
  "blog_tag"."title",
  "blog_tag"."blog_id"
   FROM "blog_tag"
  INNER JOIN "blog_article2tag" ON ("blog_tag"."nid" = "blog_article2tag"."tag_id")
  WHERE "blog_article2tag"."article_id" IN (1, 2, 3, 4);


四、extra

extra(select=None, where=None, params=None, 
      tables=None, order_by=None, select_params=None)

有些情况下,Django的查询语法难以简单的表达复杂的 WHERE 子句,对于这种情况, Django 提供了 extra() QuerySet修改机制 — 它能在 QuerySet生成的SQL从句中注入新子句

extra可以指定一个或多个 参数,例如 select, where or tables. 这些参数都不是必须的,但是你至少要使用一个!要注意这些额外的方式对不同的数据库引擎可能存在移植性问题.(因为你在显式的书写SQL语句),除非万不得已,尽量避免这样做

1、参数之select

The select 参数可以让你在 SELECT 从句中添加其他字段信息,它应该是一个字典,存放着属性名到 SQL 从句的映射。

queryResult=models.Article.objects.extra(select={'is_recent': "create_time > '2017-09-05'"})

结果集中每个 Entry 对象都有一个额外的属性is_recent, 它是一个布尔值,表示 Article对象的create_time 是否晚于2017-09-05.

练习:

# in sqlite:
    article_obj=models.Article.objects
              .filter(nid=1)
              .extra(select={"standard_time":"strftime('%%Y-%%m-%%d',create_time)"})
              .values("standard_time","nid","title")
    print(article_obj)
    # <QuerySet [{'title': 'MongoDb 入门教程', 'standard_time': '2017-09-03', 'nid': 1}]>


2、参数之where / tables

您可以使用where定义显式SQL WHERE子句 - 也许执行非显式连接。您可以使用tables手动将表添加到SQL FROM子句。

wheretables都接受字符串列表。所有where参数均为“与”任何其他搜索条件。

举例来讲:

queryResult=models.Article.objects.extra(where=['nid in (1,3) OR title like "py%" ','nid>2'])


五、整体插入

创建对象时,尽可能使用bulk_create()来减少SQL查询的数量。例如:

Entry.objects.bulk_create([
    Entry(headline="Python 3.0 Released"),
    Entry(headline="Python 3.1 Planned")
])

...更优于:

Entry.objects.create(headline="Python 3.0 Released")
Entry.objects.create(headline="Python 3.1 Planned")

注意该方法有很多注意事项,所以确保它适用于你的情况。

这也可以用在ManyToManyFields中,所以:

my_band.members.add(me, my_friend)

...更优于:

my_band.members.add(me)
my_band.members.add(my_friend)

...其中Bands和Artists具有多对多关联。


六、中介模型

处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField 就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。

例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。

对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:

from django.db import models
 
class Person(models.Model):
    name = models.CharField(max_length=128)
 
    def __str__(self):              # __unicode__ on Python 2
        return self.name
 
class Group(models.Model):
    name = models.CharField(max_length=128)
    members = models.ManyToManyField(Person, through='Membership')
 
    def __str__(self):              # __unicode__ on Python 2
        return self.name
 
class Membership(models.Model):
    person = models.ForeignKey(Person)
    group = models.ForeignKey(Group)
    date_joined = models.DateField()
    invite_reason = models.CharField(max_length=64)

既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
...     date_joined=date(1962, 8, 16),
...     invite_reason="Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
...     date_joined=date(1960, 8, 1),
...     invite_reason="Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

与普通的多对多字段不同,你不能使用addcreate和赋值语句(比如,beatles.members = [...])来创建关系:

# THIS WILL NOT WORK
>>> beatles.members.add(john)
# NEITHER WILL THIS
>>> beatles.members.create(name``=``"George Harrison"``)
# AND NEITHER WILL THIS
>>> beatles.members ``=` `[john, paul, ringo, george]

为什么不能这样做? 这是因为你不能只创建 PersonGroup之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的addcreate 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。

remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:

>>> # Beatles have broken up
>>> beatles.members.clear()
>>> # Note that this deletes the intermediate model instances
>>> Membership.objects.all()
[]




Django ORM 高性能查询优化

原文:https://www.cnblogs.com/wangyueping/p/11434488.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!