由题可知要求解一下方程组
(x+d)≡p(mod23)
(x+d)≡e(mod28)
(x+d)≡i(mod33)
很明显23 28 33互质,因此这道题只需要用中国剩余定理的结论求出ans-x+d,最后ans-d之后用ans=(ans%lcm(23,28,33)+lcm(23,28,33))lcm(23,28,33)取一下最小正解即可,这里要注意一下,当ans是0的时候ans=lcm(23,28,33).
1 #include <iostream> 2 #include <algorithm> 3 #include <utility> 4 #include <cstdio> 5 #include <cstdlib> 6 #include <ctime> 7 #include <cmath> 8 #include <cstring> 9 #include <string> 10 #include <vector> 11 #include <stack> 12 #include <queue> 13 #include <map> 14 #include <set> 15 16 using namespace std; 17 typedef unsigned long long ULL; 18 typedef long long LL; 19 typedef long double LB; 20 const int INF_INT=0x3f3f3f3f; 21 const LL INF_LL=0x3f3f3f3f3f3f3f3f; 22 23 LL n=3; 24 int a[3],m[3]={23,28,33}; 25 26 LL exgcd(LL a,LL b,LL &x,LL &y) 27 { 28 if(!b) 29 { 30 x=1,y=0; 31 return a; 32 } 33 LL g=exgcd(b,a%b,y,x); 34 y-=a/b*x; 35 return g; 36 } 37 38 LL solve(int d) 39 { 40 LL M=1,ans=0,x,y; 41 for(int i=0;i<n;i++) M*=m[i],a[i]%=m[i]; 42 for(int i=0;i<n;i++) 43 { 44 LL t=M/m[i]; 45 exgcd(t,m[i],x,y); 46 ans+=a[i]*t*x; 47 } 48 ans-=d; 49 ans=((ans%M)+M)%M; 50 if(!ans) ans+=M; 51 return ans; 52 } 53 54 int main() 55 { 56 // freopen("std.in","r",stdin); 57 // freopen("std.out","w",stdout); 58 int d,cnt=1; 59 while(~scanf("%d %d %d %d",&a[0],&a[1],&a[2],&d)&&(a[0]!=-1||a[1]!=-1||a[2]!=-1||d!=-1)) 60 printf("Case %d: the next triple peak occurs in %lld days.\n",cnt++,solve(d)); 61 return 0; 62 }
原文:https://www.cnblogs.com/VBEL/p/11437877.html