首页 > 其他 > 详细

利用brich实现文本层次聚类,将文本内容分类

时间:2019-08-31 15:33:04      阅读:157      评论:0      收藏:0      [点我收藏+]

需求

将相似的文本进行聚类 然后选出同类中最具有代表的一条数据
输入数据:
技术分享图片

运行结果如下,聚类前数据有9条 聚类后6条;
字典key为类别,value是表示同一类别的index(text.dat中的行,从0开始) {0: [0, 1, 2], 1: [3, 4], 2: [5], 3: [6], 4: [7], 5: [8]}
0,1,2被聚为一类 输出了该类的中心点"吴亦凡陈伟霆“互怼“酷狗赛道TOP1学员压轴来袭"。
修改Birch(threshold=0.7,n_clusters=None)中的threshold参数可调整聚类效果
技术分享图片

参考:
https://blog.csdn.net/Eastmount/article/details/50473675?fps=1&locationNum=4

源码:
https://github.com/codingMrHu/test_cluster

code

# coding=utf-8
import sys
import jieba
import numpy as np
from sklearn import feature_extraction    
from sklearn.feature_extraction.text import TfidfTransformer    
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import Birch
reload(sys)  
sys.setdefaultencoding('utf-8')

''' 
sklearn里面的TF-IDF主要用到了两个函数:CountVectorizer()和TfidfTransformer()。 
    CountVectorizer是通过fit_transform函数将文本中的词语转换为词频矩阵。 
    矩阵元素weight[i][j] 表示j词在第i个文本下的词频,即各个词语出现的次数。 
    通过get_feature_names()可看到所有文本的关键字,通过toarray()可看到词频矩阵的结果。 
    TfidfTransformer也有个fit_transform函数,它的作用是计算tf-idf值。 
'''

class Cluster():
    def init_data(self):
        # corpus = [] #文档预料 空格连接
        corpus = []
        # f_write = open("jieba_result.dat","w")
        self.title_dict = {}
        with open('text.dat','r') as f:
            index = 0
            for line in f:
                title = line.strip()
                self.title_dict[index] = title
                seglist = jieba.cut(title,cut_all=False)  #精确模式  
                output = ' '.join(['%s'%x for x in list(seglist)]).encode('utf-8')       #空格拼接
                # print index,output
                index +=1
                corpus.append(output.strip())

        #将文本中的词语转换为词频矩阵 矩阵元素a[i][j] 表示j词在i类文本下的词频  
        vectorizer = CountVectorizer()  
        #该类会统计每个词语的tf-idf权值  
        transformer = TfidfTransformer()  
        #第一个fit_transform是计算tf-idf 第二个fit_transform是将文本转为词频矩阵  
        tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))  
        #获取词袋模型中的所有词语    
        word = vectorizer.get_feature_names()
        #将tf-idf矩阵抽取出来,元素w[i][j]表示j词在i类文本中的tf-idf权重  
        self.weight = tfidf.toarray()
        # print self.weight

    def birch_cluster(self):
        print ('start cluster Birch -------------------' )
        self.cluster = Birch(threshold=0.6,n_clusters=None)
        self.cluster.fit_predict(self.weight)

        
    def get_title(self):
        # self.cluster.labels_ 为聚类后corpus中文本index 对应 类别 {index: 类别} 类别值int值 相同值代表同一类
        cluster_dict = {}
        # cluster_dict key为Birch聚类后的每个类,value为 title对应的index
        for index,value in enumerate(self.cluster.labels_):
            if value not in cluster_dict:
                cluster_dict[value] = [index]
            else:
                cluster_dict[value].append(index)
        print cluster_dict

        print ("-----before cluster Birch count title:",len(self.title_dict))
        # result_dict key为Birch聚类后距离中心点最近的title,value为sum_similar求和
        
        result_dict = {}
        for indexs in cluster_dict.values():
            latest_index = indexs[0]
            similar_num = len(indexs)
            if len(indexs)>=2:
                min_s = np.sqrt(np.sum(np.square(self.weight[indexs[0]]-self.cluster.subcluster_centers_[self.cluster.labels_[indexs[0]]])))
                for index in indexs:
                    s = np.sqrt(np.sum(np.square(self.weight[index]-self.cluster.subcluster_centers_[self.cluster.labels_[index]])))
                    if s<min_s:
                        min_s = s
                        latest_index = index

            title = self.title_dict[latest_index]

            result_dict[title] = similar_num
        print ("-----after cluster Birch count title:",len(result_dict))
        for title in result_dict:
            print title,result_dict[title]
        return result_dict
    
    def run(self):
        self.init_data()
        self.birch_cluster()
        self.get_title()

if __name__=='__main__':
    cluster = Cluster()
    cluster.run()

利用brich实现文本层次聚类,将文本内容分类

原文:https://www.cnblogs.com/i-love-python/p/11438715.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!