将相似的文本进行聚类 然后选出同类中最具有代表的一条数据
输入数据:
运行结果如下,聚类前数据有9条 聚类后6条;
字典key为类别,value是表示同一类别的index(text.dat中的行,从0开始) {0: [0, 1, 2], 1: [3, 4], 2: [5], 3: [6], 4: [7], 5: [8]}
0,1,2被聚为一类 输出了该类的中心点"吴亦凡陈伟霆“互怼“酷狗赛道TOP1学员压轴来袭"。
修改Birch(threshold=0.7,n_clusters=None)中的threshold参数可调整聚类效果
参考:
https://blog.csdn.net/Eastmount/article/details/50473675?fps=1&locationNum=4
源码:
https://github.com/codingMrHu/test_cluster
# coding=utf-8
import sys
import jieba
import numpy as np
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import Birch
reload(sys)
sys.setdefaultencoding('utf-8')
'''
sklearn里面的TF-IDF主要用到了两个函数:CountVectorizer()和TfidfTransformer()。
CountVectorizer是通过fit_transform函数将文本中的词语转换为词频矩阵。
矩阵元素weight[i][j] 表示j词在第i个文本下的词频,即各个词语出现的次数。
通过get_feature_names()可看到所有文本的关键字,通过toarray()可看到词频矩阵的结果。
TfidfTransformer也有个fit_transform函数,它的作用是计算tf-idf值。
'''
class Cluster():
def init_data(self):
# corpus = [] #文档预料 空格连接
corpus = []
# f_write = open("jieba_result.dat","w")
self.title_dict = {}
with open('text.dat','r') as f:
index = 0
for line in f:
title = line.strip()
self.title_dict[index] = title
seglist = jieba.cut(title,cut_all=False) #精确模式
output = ' '.join(['%s'%x for x in list(seglist)]).encode('utf-8') #空格拼接
# print index,output
index +=1
corpus.append(output.strip())
#将文本中的词语转换为词频矩阵 矩阵元素a[i][j] 表示j词在i类文本下的词频
vectorizer = CountVectorizer()
#该类会统计每个词语的tf-idf权值
transformer = TfidfTransformer()
#第一个fit_transform是计算tf-idf 第二个fit_transform是将文本转为词频矩阵
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
#获取词袋模型中的所有词语
word = vectorizer.get_feature_names()
#将tf-idf矩阵抽取出来,元素w[i][j]表示j词在i类文本中的tf-idf权重
self.weight = tfidf.toarray()
# print self.weight
def birch_cluster(self):
print ('start cluster Birch -------------------' )
self.cluster = Birch(threshold=0.6,n_clusters=None)
self.cluster.fit_predict(self.weight)
def get_title(self):
# self.cluster.labels_ 为聚类后corpus中文本index 对应 类别 {index: 类别} 类别值int值 相同值代表同一类
cluster_dict = {}
# cluster_dict key为Birch聚类后的每个类,value为 title对应的index
for index,value in enumerate(self.cluster.labels_):
if value not in cluster_dict:
cluster_dict[value] = [index]
else:
cluster_dict[value].append(index)
print cluster_dict
print ("-----before cluster Birch count title:",len(self.title_dict))
# result_dict key为Birch聚类后距离中心点最近的title,value为sum_similar求和
result_dict = {}
for indexs in cluster_dict.values():
latest_index = indexs[0]
similar_num = len(indexs)
if len(indexs)>=2:
min_s = np.sqrt(np.sum(np.square(self.weight[indexs[0]]-self.cluster.subcluster_centers_[self.cluster.labels_[indexs[0]]])))
for index in indexs:
s = np.sqrt(np.sum(np.square(self.weight[index]-self.cluster.subcluster_centers_[self.cluster.labels_[index]])))
if s<min_s:
min_s = s
latest_index = index
title = self.title_dict[latest_index]
result_dict[title] = similar_num
print ("-----after cluster Birch count title:",len(result_dict))
for title in result_dict:
print title,result_dict[title]
return result_dict
def run(self):
self.init_data()
self.birch_cluster()
self.get_title()
if __name__=='__main__':
cluster = Cluster()
cluster.run()
原文:https://www.cnblogs.com/i-love-python/p/11438715.html