首页 > 其他 > 详细

Merge Sort及其对一类问题的应用

时间:2019-08-31 15:57:01      阅读:72      评论:0      收藏:0      [点我收藏+]

1.归并排序 O(nlogn) stable

#include <iostream>
#include <vector>
using namespace std;

void merge(vector<int>& arr, int l, int mid, int r){
    int n1 = mid - l + 1, n2 = r - mid;
    vector<int> left(n1);
    vector<int> right(n2);
    for(int i = 0; i < n1; ++i) left[i] = arr[l + i];
    for(int i = 0; i < n2; ++i) right[i] = arr[mid + 1 + i];
    int i = 0, j = 0, k = l;
    while(i < n1 && j < n2){
        if(left[i] <= right[j]) arr[k++] = left[i++];
        else arr[k++] = right[j++];
    }
    while(i < n1) arr[k++] = left[i++];
    while(j < n2) arr[k++] = right[j++];
}


void mergeSort(vector<int>& arr, int l, int r){
    if(l < r){
        int mid = (l + r) / 2;
        mergeSort(arr, l, mid);
        mergeSort(arr, mid + 1, r);
        merge(arr, l, mid, r);
    }
}


int main(){
    vector<int> input = {3, 4, 6, 1, 9, 5, 2, 7, 0, 8};
    mergeSort(input, 0, input.size() - 1);
    for(int i : input)
        cout << i << " ";
    return 0;
}

2.数组中逆序对个数Count Inversions

#include <iostream>
#include <vector>
using namespace std;

int merge(vector<int>& arr, int l, int mid, int r);

int mergeSort(vector<int>& arr, int l, int r){
    int invCount = 0;
    if(l < r){
        int mid = (l + r) / 2;
        invCount = mergeSort(arr, l, mid);
        invCount += mergeSort(arr, mid + 1, r);
        invCount += merge(arr, l, mid, r); 
    }
    return invCount;
}


int merge(vector<int>& arr, int l, int mid, int r){
    int n1 = mid - l + 1, n2 = r - mid;
    vector<int> left(n1);
    vector<int> right(n2);
    for(int i = 0; i < n1; ++i) left[i] = arr[l + i];
    for(int i = 0; i < n2; ++i) right[i] = arr[mid + 1 + i];
    int i = 0, j = 0, k = l;
    int invCount = 0;
    while(i < n1 && j < n2){
        if(left[i] > right[j]){
            invCount += mid - i + 1;
            arr[k++] = right[j++];
        }
        else
            arr[k++] = left[i++];
    }
    while(i < n1) arr[k++] = left[i++];
    while(j < n2) arr[k++] = right[j++];
    return invCount;
}


int main(){
    vector<int> input = {1, 3, 5, 2, 4};
    int ans = mergeSort(input, 0, input.size() - 1);
    for(int i : input)
        cout << i << " ";
    cout << endl;
    cout << ans;
    return 0;
}

3.Leetcode 493 Reverse Pairs

Given an array nums, we call (i, j) an important reverse pair if i < j and nums[i] > 2 * nums[j]. You need to return the number of important reverse pairs in the given array.

class Solution {
public:
    vector<int> helper;
    
    int reversePairs(vector<int>& nums) {
        helper.resize(nums.size());
        return mergeSort(nums, 0, nums.size() - 1);
    }
    
    int mergeSort(vector<int>& nums, int s, int e){
        if(s >= e) return 0;
        int mid = s + (e - s) / 2;
        int cnt = mergeSort(nums, s, mid) + mergeSort(nums, mid + 1, e);
        for(int i = s, j = mid + 1; i <= mid; ++i){
            while(j <= e && nums[i] / 2.0 > nums[j])
                j++;
            cnt += j - (mid + 1);
        }
        merge(nums, s, mid, e);
        return cnt;
    }
    
    void merge(vector<int>& nums, int s, int mid, int e){
        for(int i = s; i <= e; ++i) helper[i] = nums[i];
        int p1 = s;
        int p2 = mid + 1;
        int i = s;
        while(p1 <= mid || p2 <= e){  //注意这个merge的逻辑
            if(p1 > mid || p2 <= e && helper[p1] >= helper[p2])
                nums[i++] = helper[p2++];
            else
                nums[i++] = helper[p1++];
        }
    }
    
};

4.Leetcode 315 Count  of Smaller Numbers After self

You are given an integer array nums and you have to return a new counts array. The counts array has the porperty where counts[i] is the number o f smaller elements to the right of nums[i].

class Solution {
public:
    unordered_map<int, int> count;
    vector<int> helper;
    vector<int> countSmaller(vector<int>& nums) {
        vector<int> numsCopy = nums;
        helper.resize(nums.size());
        vector<int> res(nums.size());
        mergeSort(nums, 0, nums.size() - 1);
        for(int i = 0; i < nums.size(); ++i){
            res[i] = count[numsCopy[i]]; 
        }
        return res;
    }

    void mergeSort(vector<int>& nums, int s, int e){
        if(s < e){
            int mid = s + (e - s) / 2;
            mergeSort(nums, s, mid);
            mergeSort(nums, mid + 1, e);
            for(int i = s, j = mid + 1; i <= mid; ++i){
                while(j <= e && nums[i] > nums[j])
                    j++;
                count[nums[i]] += j - (mid + 1);
            }
            merge(nums, s, mid, e);
        }
    }

    void merge(vector<int>& nums, int s, int mid, int e){
        for(int i = s; i <= e; ++i) helper[i] = nums[i];
        int p1 = s;
        int p2 = mid + 1;
        int i = s;
        while(p1 <= mid || p2 <= e){
            if(p1 > mid || p2 <= e && helper[p1] >= helper[p2]) nums[i++] = helper[p2++];
            else nums[i++] = helper[p1++];
        }
    }
};

5.Count of Range Sum

Given an interger array nums, return the number of range sums that lie in [lower, upper] inclusive. Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i <= j), inclusive.

Note: A naive algorithm of $O(n_2)$ is trivial. You MUST do better than that.

技术分享图片

 

 

class Solution {
public:
    int countRangeSum(vector<int>& nums, int lower, int upper) {
        int size = nums.size();
        if(size == 0) return 0;
        vector<long> sums(size + 1, 0);
        for(int i = 0; i < size; ++i)
            sums[i + 1] = sums[i] + nums[i];
        return help(sums, 0, size + 1, lower, upper);
    }
    
    int help(vector<long>& sums, int start, int end, int lower, int upper){
        if(end - start <= 1) return 0;
        int mid = (start + end) / 2;
        int cnt = help(sums, start, mid, lower, upper) + help(sums, mid, end, lower, upper);
        int m = mid, n = mid, t = mid, len = 0;
        vector<long> cache(end - start, 0);
        for(int i = start, s = 0; i < mid; ++i, ++s){
            while(m < end && sums[m] - sums[i] < lower) ++m;
            while(n < end && sums[n] - sums[i] <= upper) ++n;
            cnt += n - m;
            while(t < end && sums[t] < sums[i]) cache[s++] = sums[t++];
            cache[s] = sums[i];
            len = s;
        }
        for(int i = 0; i <= len; ++i) sums[start + i] = cache[i];
        return cnt;
    }
};

 

Merge Sort及其对一类问题的应用

原文:https://www.cnblogs.com/betaa/p/11438599.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!