首页 > 其他 > 详细

Codeforces Round #572 (Div. 2)

时间:2019-08-31 21:53:58      阅读:75      评论:0      收藏:0      [点我收藏+]

比赛链接:Codeforces Round #572 (Div. 2)

官方题解:Editorial of Codeforces Round #572

A. Keanu Reeves

题意

如果一个 \(01\) 序列中 \(0\) 的数量和 \(1\) 的数量不同,就认为这个序列是“好”的。

给定一个长度为 \(n\)\(01\) 序列,将这个序列分割成多个“好”的序列,求最少分割次数和分割后的所有序列。

思路

如果原序列 \(0\)\(1\) 不同就不用分割。

否则分割成两个串,第一串为第一个数,剩下的为第二串。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const int maxn = 100000 + 5;

string s;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    cin >> s;
    if(n % 2) {
        cout << 1 << endl;
        cout << s << endl;
        return 0;
    }
    int one = 0;
    for(int i = 0; i < n; ++i) {
        if(s[i] == '1') ++one;
    }
    if(one * 2 != n) {
        cout << 1 << endl;
        cout << s << endl; 
    } else {
        cout << 2 << endl;
        cout << s.substr(0, n - 1) << " " << s[n - 1] << endl;
    }
    return 0;
}

B. Number Circle

题意

给定 \(n\) 个数字,将所有数字构成一个环,放置顺序任意,问是否存在一种放置顺序,使得每个数字小于左右两个数字的和。

思路

对所有数字排序,如果 \(a_n \ge a_{n - 1} + a_{n - 2}\),那么答案是 \(NO\),因为这样 \(a_n\) 大于等于任意两个数的和。

否则答案一定存在,只要交换最后两个数即可,因为 \(a_i < a_{i + 1} < a_{i - 1} + a_{i + 1}\ (i < n)\) 。(构造方法不唯一)

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 10;

int a[maxn];

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    for(int i = 0; i < n; ++i) {
        cin >> a[i];
    }
    sort(a, a + n);
    if(a[n - 1] >= a[n - 2] + a[n - 3]) {
        cout << "NO" << endl;
    } else {
        cout << "YES" << endl;
        swap(a[n - 1], a[n - 2]);
        for(int i = 0; i < n; ++i) {
            cout << a[i] << " ";
        }
        cout << endl;
    }
    return 0;
}

C. Candies!

题意

定义 \(f([a_1, a_2, \ldots, a_{2^k}])\) 为每次取两个相邻的数 \(a_i\)\(a_{i + 1}\),将这两个数变成一个数 \((a_i + a_{i + 1})\ mod\ 10\),经过若干次同样操作直到序列长度为 \(1\) 为止。其中每次操作时如果 \(a_i + a_{i + 1} \ge 10\) 就能获得一颗糖果。

现在给定一个长度为 \(n\) 的序列 \(s\),以及 \(q\) 个询问。每个询问包含 \(l\)\(r\),求 \(f([s_{l}, s_{l + 1}, \ldots, s_{r}])\)

思路

每次合并是相加取模,所以每次序列都不会超过 \(10\)\(f([a_1, a_2, \ldots, a_{2^k}]) = \lfloor \frac{a_1 + a_2 + \ldots + a_{2^k}}{10} \rfloor\)

用前缀和处理即可。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;

int s[maxn];

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    for(int i = 1; i <= n; ++i) {
        cin >> s[i];
        s[i] += s[i - 1];
    }
    int q;
    cin >> q;
    for(int i = 0; i < q; ++i) {
        int l, r;
        cin >> l >> r;
        cout << (s[r] - s[l - 1]) / 10 << endl;
    }
    return 0;
}

D1. Add on a Tree

题意

给定一颗树,初始每条边的权值为 \(0\)。可以任选两个叶子结点,给这两个结点的简单路径的所有边加上任意实数,问是否可以通过有限次操作使得树上的所有边达到任意值。

思路

如果有度为 \(2\) 的结点就不能。因为度为 \(2\) 的结点的两条边经过任意次操作后权值都相等。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 100000 + 5;

int degree[maxn];

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    cin >> n;
    for(int i = 0; i < n - 1; ++i) {
        int u, v;
        cin >> u >> v;
        degree[u]++; degree[v]++;
    }
    for(int i = 1; i <= n; ++i) {
        if(degree[i] == 2) {
            cout << "NO" << endl;
            return 0;
        }
    }
    cout << "YES" << endl;
    return 0;
}

D2. Add on a Tree: Revolution

待补

E.Count Pairs

题意

给定 \(n\) 个数 \(a_1, a_2, ..., a_n\) ,求满足 \((a_i+a_j)(a_i^2+a_j^2)\equiv k\ mod\ p\)\((i, j)(1 \le i < j \le n)\) 的数量。其中 \(p\) 是素数,且 \(n\) 个数都不同。

思路

\[(a_i+a_j)(a_i^2+a_j^2)\equiv k\ mod\ p\]

\[(a_i-a_j)(a_i+a_j)(a_i^2+a_j^2)\equiv (a_i-a_j)k\ mod\ p\]

\[(a_i^2-a_j^2)(a_i^2+a_j^2)\equiv (a_i-a_j)k\ mod\ p\]

\[(a_i^4-a_j^4)\equiv (a_i-a_j)k\ mod\ p\]

\[a_i^4-ka_i\equiv a_j^4-ka_j\ (mod\ p)\]

统计一下有多少对 \((a_i^4-ka_i)\ mod\ p\) 是相同的。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const double eps = 1e-8;
const int inf = 0x3f3f3f3f;
const int maxn = 3e5 + 5;

ll a[maxn];

ll qmod(ll a, ll b, ll m) {
    if(!b) return 1 % m;
    ll ans = 1;
    while(b) {
        if(b & 1) ans = (ans * a) % m;
        a = (a * a) % m; 
        b >>= 1;
    }
    return ans;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n;
    ll p, k;
    cin >> n >> p >> k;
    map<ll, int> b;
    for(int i = 0; i < n; ++i) {
        cin >> a[i];
        ll tmp = (qmod(a[i], 4, p) - k * a[i]);
        tmp += p * (abs(tmp) / p + 1);
        b[tmp % p]++;
        // cout << tmp << endl;
    }
    ll sum = 0;
    for(auto it = b.begin(); it != b.end(); ++it) {
        if(it->second > 1) sum += (it->second) * (it->second - 1) / 2;
    }
    cout << sum << endl;
    return 0;
}

F.Array Beauty

待补

Codeforces Round #572 (Div. 2)

原文:https://www.cnblogs.com/wulitaotao/p/11440527.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!