题目连接:uva 10655 - Contemplation! Algebra
题目大意:输入非负整数,p,q,n,求an+bn的值,其中a和b满足a+b=p,ab=q,注意a和b不一定是实数。
解题思路:定义f(n)=an+bn,则有f(n)?(a+b)=(an+bn)?(a+b)=an+1+abn+ban+bn+1=f(n+1)+abf(n?1), 所以f(n+1)=(a+b)f(n)?abf(n?1),用矩阵快速幂求解。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxsize = 100;
typedef long long ll;
typedef long long type;
struct Mat {
int r, l;
type arr[maxsize][maxsize];
Mat (int r = 0, int l = 0) {
set(r, l);
memset(arr, 0, sizeof(arr));
}
void set (int r, int l) {
this->r = r;
this->l = l;
}
Mat operator * (const Mat& u) {
Mat ret(r, u.l);
for (int k = 0; k < l; k++) {
for (int i = 0; i < r; i++)
for (int j = 0; j < u.l; j++)
ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]);
}
return ret;
}
};
void put (Mat x) {
for (int i = 0; i < x.r; i++) {
for (int j = 0; j < x.l; j++)
printf("%lld ", x.arr[i][j]);
printf("\n");
}
}
Mat pow_mat (Mat ans, Mat x, ll n) {
while (n) {
if (n&1)
ans = x * ans;
x = x * x;
n >>= 1;
}
return ans;
}
int main () {
ll p, q, n;
while (scanf("%lld%lld%lld", &p, &q, &n) == 3 && p + q + n) {
Mat x(2, 2);
x.arr[0][1] = 1;
x.arr[1][0] = -q;
x.arr[1][1] = p;
Mat ans(2, 1);
ans.arr[0][0] = 2;
ans.arr[1][0] = p;
if (n > 1) {
ans = pow_mat(ans, x, n-1);
printf("%lld\n", ans.arr[1][0]);
} else
printf("%lld\n", ans.arr[n][0]);
}
return 0;
}
uva 10655 - Contemplation! Algebra(矩阵快速幂),布布扣,bubuko.com
uva 10655 - Contemplation! Algebra(矩阵快速幂)
原文:http://blog.csdn.net/keshuai19940722/article/details/38647175