首页 > 其他 > 详细

数据平滑

时间:2019-09-05 20:23:21      阅读:129      评论:0      收藏:0      [点我收藏+]

数据平滑

数据的平滑处理通常包含有降噪、拟合等操作。降噪的功能意在去除额外的影响因素,拟合的目的意在数学模型化,可以通过更多的数学方法识别曲线特征。

案例:绘制两只股票收益率曲线。收益率 =(后一天收盘价-前一天收盘价) / 前一天收盘价

 

  使用卷积完成数据降噪。

# 数据平滑
import numpy as np
import matplotlib.pyplot as mp
import datetime as dt
import matplotlib.dates as md


def dmy2ymd(dmy):
  """
  把日月年转年月日
  :param day:
  :return:
  """
  dmy = str(dmy, encoding=utf-8)
  t = dt.datetime.strptime(dmy, %d-%m-%Y)
  s = t.date().strftime(%Y-%m-%d)
  return s


dates, bhp_closing_prices =   np.loadtxt(bhp.csv,
             delimiter=,,
             usecols=(1, 6),
             unpack=True,
             dtype=M8[D],f8,
             converters={1: dmy2ymd})  # 日月年转年月日
vale_closing_prices =   np.loadtxt(vale.csv,
             delimiter=,,
             usecols=(6,),
             unpack=True)  # 因为日期一样,所以此处不读日期
# print(dates)
# 绘制收盘价的折现图
mp.figure(APPL, facecolor=lightgray)
mp.title(APPL, fontsize=18)
mp.xlabel(Date, fontsize=14)
mp.ylabel(Price, fontsize=14)
mp.grid(linestyle=":")

# 设置刻度定位器
# 每周一一个主刻度,一天一个次刻度

ax = mp.gca()
ma_loc = md.WeekdayLocator(byweekday=md.MO)
ax.xaxis.set_major_locator(ma_loc)
ax.xaxis.set_major_formatter(md.DateFormatter(%Y-%m-%d))
ax.xaxis.set_minor_locator(md.DayLocator())
# 修改dates的dtype为md.datetime.datetiem
dates = dates.astype(md.datetime.datetime)

# 计算两只股票的收益率,并绘制曲线
bhp_returns = np.diff(bhp_closing_prices) / bhp_closing_prices[:-1]
vale_returns = np.diff(vale_closing_prices) / vale_closing_prices[:-1]
mp.plot(dates[1:], bhp_returns, color=red, alpha=0.1,label=bhp returns)
mp.plot(dates[1:], vale_returns, color=blue,alpha=0.1, label=vale returns)

#卷积降噪
kernel = np.hanning(8)
kernel/=kernel.sum()
bhp_convalved = np.convolve(bhp_returns,kernel,valid)
vale_convalved = np.convolve(vale_returns,kernel,valid)
mp.plot(dates[8:],bhp_convalved,color=dodgerblue,alpha=0.8,label=bhp convalved)
mp.plot(dates[8:],vale_convalved,color=orangered,alpha=0.8,label=vale convalved)

mp.legend()
mp.gcf().autofmt_xdate()
mp.show()

技术分享图片

 

  对处理过的股票收益率做多项式拟合。

# 数据平滑
import numpy as np
import matplotlib.pyplot as mp
import datetime as dt
import matplotlib.dates as md


def dmy2ymd(dmy):
  """
  把日月年转年月日
  :param day:
  :return:
  """
  dmy = str(dmy, encoding=utf-8)
  t = dt.datetime.strptime(dmy, %d-%m-%Y)
  s = t.date().strftime(%Y-%m-%d)
  return s


dates, bhp_closing_prices =   np.loadtxt(bhp.csv,
             delimiter=,,
             usecols=(1, 6),
             unpack=True,
             dtype=M8[D],f8,
             converters={1: dmy2ymd})  # 日月年转年月日
vale_closing_prices =   np.loadtxt(vale.csv,
             delimiter=,,
             usecols=(6,),
             unpack=True)  # 因为日期一样,所以此处不读日期
# print(dates)
# 绘制收盘价的折现图
mp.figure(APPL, facecolor=lightgray)
mp.title(APPL, fontsize=18)
mp.xlabel(Date, fontsize=14)
mp.ylabel(Price, fontsize=14)
mp.grid(linestyle=":")

# 设置刻度定位器
# 每周一一个主刻度,一天一个次刻度

ax = mp.gca()
ma_loc = md.WeekdayLocator(byweekday=md.MO)
ax.xaxis.set_major_locator(ma_loc)
ax.xaxis.set_major_formatter(md.DateFormatter(%Y-%m-%d))
ax.xaxis.set_minor_locator(md.DayLocator())
# 修改dates的dtype为md.datetime.datetiem
dates = dates.astype(md.datetime.datetime)

# 计算两只股票的收益率,并绘制曲线
bhp_returns = np.diff(bhp_closing_prices) / bhp_closing_prices[:-1]
vale_returns = np.diff(vale_closing_prices) / vale_closing_prices[:-1]
mp.plot(dates[1:], bhp_returns, color=red, alpha=0.1,label=bhp returns)
mp.plot(dates[1:], vale_returns, color=blue,alpha=0.1, label=vale returns)

#卷积降噪
kernel = np.hanning(8)
kernel/=kernel.sum()
bhp_convalved = np.convolve(bhp_returns,kernel,valid)
vale_convalved = np.convolve(vale_returns,kernel,valid)
mp.plot(dates[8:],bhp_convalved,color=dodgerblue,alpha=0.1,label=bhp convalved)
mp.plot(dates[8:],vale_convalved,color=orangered,alpha=0.1,label=vale convalved)

#多项式拟合
days = dates[8:].astype(M8[D]).astype(i4)
bhp_p = np.polyfit(days,bhp_convalved,3)
bhp_val = np.polyval(bhp_p,days)
vale_p = np.polyfit(days,vale_convalved,3)
vale_val = np.polyval(vale_p,days)
mp.plot(dates[8:],bhp_val,color=orangered,label=bhp polyval)
mp.plot(dates[8:],vale_val,color=blue,label=vale polyval)

mp.legend()
mp.gcf().autofmt_xdate()
mp.show()

技术分享图片

  通过获取两个函数的焦点可以分析两只股票的投资收益比。

# 数据平滑
import numpy as np
import matplotlib.pyplot as mp
import datetime as dt
import matplotlib.dates as md


def dmy2ymd(dmy):
  """
  把日月年转年月日
  :param day:
  :return:
  """
  dmy = str(dmy, encoding=utf-8)
  t = dt.datetime.strptime(dmy, %d-%m-%Y)
  s = t.date().strftime(%Y-%m-%d)
  return s


dates, bhp_closing_prices =   np.loadtxt(bhp.csv,
             delimiter=,,
             usecols=(1, 6),
             unpack=True,
             dtype=M8[D],f8,
             converters={1: dmy2ymd})  # 日月年转年月日
vale_closing_prices =   np.loadtxt(vale.csv,
             delimiter=,,
             usecols=(6,),
             unpack=True)  # 因为日期一样,所以此处不读日期
# print(dates)
# 绘制收盘价的折现图
mp.figure(APPL, facecolor=lightgray)
mp.title(APPL, fontsize=18)
mp.xlabel(Date, fontsize=14)
mp.ylabel(Price, fontsize=14)
mp.grid(linestyle=":")

# 设置刻度定位器
# 每周一一个主刻度,一天一个次刻度

ax = mp.gca()
ma_loc = md.WeekdayLocator(byweekday=md.MO)
ax.xaxis.set_major_locator(ma_loc)
ax.xaxis.set_major_formatter(md.DateFormatter(%Y-%m-%d))
ax.xaxis.set_minor_locator(md.DayLocator())
# 修改dates的dtype为md.datetime.datetiem
dates = dates.astype(md.datetime.datetime)

# 计算两只股票的收益率,并绘制曲线
bhp_returns = np.diff(bhp_closing_prices) / bhp_closing_prices[:-1]
vale_returns = np.diff(vale_closing_prices) / vale_closing_prices[:-1]
mp.plot(dates[1:], bhp_returns, color=red, alpha=0.1,label=bhp returns)
mp.plot(dates[1:], vale_returns, color=blue,alpha=0.1, label=vale returns)

#卷积降噪
kernel = np.hanning(8)
kernel/=kernel.sum()
bhp_convalved = np.convolve(bhp_returns,kernel,valid)
vale_convalved = np.convolve(vale_returns,kernel,valid)
mp.plot(dates[8:],bhp_convalved,color=dodgerblue,alpha=0.1,label=bhp convalved)
mp.plot(dates[8:],vale_convalved,color=orangered,alpha=0.1,label=vale convalved)

#多项式拟合
days = dates[8:].astype(M8[D]).astype(i4)

bhp_p = np.polyfit(days,bhp_convalved,3)
bhp_val = np.polyval(bhp_p,days)
vale_p = np.polyfit(days,vale_convalved,3)
vale_val = np.polyval(vale_p,days)
mp.plot(dates[8:],bhp_val,color=orangered,label=bhp polyval)
mp.plot(dates[8:],vale_val,color=blue,label=vale polyval)


#求两个多项式函数的焦点
diff_p = np.polysub(bhp_p,vale_p)
xs = np.roots(diff_p)
print(xs.astype(M8[D]))
#[‘2011-03-23‘ ‘2011-03-11‘ ‘2011-02-21‘]


mp.legend()
mp.gcf().autofmt_xdate()
mp.show()

 

数据平滑

原文:https://www.cnblogs.com/maplethefox/p/11468970.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!