https://cn.vjudge.net/problem/UVA-12165
给出D、E、F分BC,CA,AB的比$m_1:m_2$,$m_3:m_4$,$m_5:m_6$和PQR三点的坐标,求ABC三点的坐标
利用梅涅劳斯定理,找出直线和三边的交点,然后每个边按顺序乘下去
可以写出三个方程
\[\frac{AR}{RP}\cdot\boxed{\frac{PQ}{QB}}\cdot\frac{BF}{FA}=1\]
\[\frac{BP}{PQ}\cdot\boxed{\frac{QR}{RC}}\cdot\frac{CD}{DB}=1\]
\[\frac{CQ}{QR}\cdot\boxed{\frac{RP}{PA}}\cdot\frac{AE}{EC}=1\]
然后得到
\[\frac{AR}{RP}\cdot\frac{PQ}{PQ+BP}=\frac{m5}{m6}=k_1\]
\[\frac{BP}{PQ}\cdot\frac{QR}{QR+RC}=\frac{m1}{m2}=k_2\]
\[\frac{CQ}{QR}\cdot\frac{RP}{RP+RA}=\frac{m3}{m4}=k_3\]
最后解
\[x_1=k_1(1+x_2)\]
\[x_2=k_2(1+x_3)\]
\[x_3=k_3(1+x_4)\]
然后点加向量就可以得出三点坐标
AC代码
#include<cstdio> #include<cctype> #include<cmath> #define REP(r,x,y) for(register int r=(x); r<(y);r++) #ifdef sahdsg #define DBG(...) printf(__VA_ARGS__) #else #define DBG(...) (void)0 #endif using namespace std; int _s; char _c; template <class T> inline void read(T&x) { x=0; do _c=getchar(); while(!isdigit(_c) && _c!=‘-‘); _s=1; if(_c==‘-‘) _s=-1, _c=getchar(); while(isdigit(_c)) { x=x*10+_c-‘0‘; _c=getchar();} x*=_s; } template<class T, class...A> inline void read(T &x, A&...a){read(x); read(a...);} #define D point #define CD const D struct point { double x,y; void read() {scanf("%lf%lf",&x,&y);} void prn() {printf("%.8lf %.8lf",x,y);} }; D operator+(CD&l, CD&r) {return (D){l.x+r.x,l.y+r.y};} D operator-(CD&l, CD&r) {return (D){l.x-r.x,l.y-r.y};} D operator/(CD&l,double a) {return (D){l.x/a,l.y/a};} D operator*(CD&l,double a) {return (D){l.x*a,l.y*a};} D operator*(double a, CD &l) {return (D){l.x*a,l.y*a};} double cross(CD&l, CD&r) {return l.x*r.y-l.y*r.x;} D intersec(CD&a, D b, CD&c, D d) { b=b-a; d=d-c; D u=a-c; double t = cross(d, u) / cross(b,d); return a+b*t; } #undef CD #undef D point P,Q,R,A,B,C; #define x1 nvdsaokvl #define x2 nvkjdavnf #define x3 vmasdvddz int m1,m2,m3,m4,m5,m6; double k1,k2,k3,x1,x2,x3; int main() { int N; read(N); while(0<N--) { P.read(); Q.read(); R.read(); read(m1,m2,m3,m4,m5,m6); k1=(double)m5/m6, k2=(double)m1/m2, k3=(double)m3/m4; double t=1-k1*k2*k3; x1=(k1+k1*k2*k3+k1*k2)/t; x2=(k2+k1*k2*k3+k2*k3)/t; x3=(k3+k1*k2*k3+k1*k3)/t; DBG("%lf %lf %lf\n", x1,x2,x3); A=x1*(R-P)+R; B=x2*(P-Q)+P; C=x3*(Q-R)+Q; A.prn();putchar(‘ ‘); B.prn();putchar(‘ ‘); C.prn();putchar(‘\n‘); } return 0; }
原文:https://www.cnblogs.com/sahdsg/p/11470498.html