首页 > 其他 > 详细

凸优化【4 凸优化问题的描述及基本概念】

时间:2019-09-09 17:21:15      阅读:100      评论:0      收藏:0      [点我收藏+]

凸优化问题 Convex Problems

凸优化的广义定义

广义上讲,目标函数是凸函数,且相关约束是凸集约束,那么这个问题就称为凸优化。

但实际上我们经常遇见的凸优化问题范围会更小一点。

一般优化问题的描述

\[ \begin{aligned} min \qquad & f_0 (x) \ s.t \qquad & f_i (x) \leq 0, \quad i=1,...,m \ & h_i(x) = 0, \quad i=1,...,p \end{aligned} \]

下面介绍一下与上面式子相关的名词

名词介绍

  1. 优化变量 Optimization Variable: \(x\in R^n\)
  2. 目标函数/损失函数(objective function/cost function):\(f_0 : R^n \rightarrow R\)。当是最大化某个函数时,对应的函数可以成为效用函数(utility function)。
  3. 不等式约束(Inequlity constant):\(f_i(x) \leq 0\)
  4. 等式约束(equlity constant):\(h_i(x)=0\)
  5. \(m=p=0\)时,则问题就变成无约束问题了(unconstanted)。
  6. 优化问题的域(domain):
    \[D= \bigcap^m_{i=1}dom \ f_i \cap \bigcap^p_{i=1}h_i\]
  7. 可行解(feasible set)
    \[ \begin{aligned} & x\in D 为可行解,则 \ &f_i(x) \leq 0 \qquad i=1,...,m \ &h_i(x) =0 \qquad i=1,...,p \\end{aligned} \]
    记:
    \[X_f = \{x为可行解\}\]
  8. 问题的最优值(optimal value)
    \[ \begin{aligned} p^* = inf \{f_0(x)|x \in X_f\} \end{aligned} \]
  9. 最优解(optimal point/solution)
    \[若x^*可行,且f_0(x^*)=p^*\]
  10. 最优解集(optimal set)
    \[X_{opt}=\{x|x \in X_f, f_0(x)=p^*\}\]
  11. \(\epsilon\)次优解集(\(\epsilon -suboptimal set\))
    \[X_{\epsilon} = \{x|x\in X_f , f_0(x)\leq p^* + \epsilon \}\]
  12. 局部最优解集(locally optimal)
    技术分享图片

凸优化【4 凸优化问题的描述及基本概念】

原文:https://www.cnblogs.com/shenhaojing/p/11492621.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!