斜率优化DP。。。。
对数组排序后,dp【i】【j】表示对前j个物品分i段的最少代价,dp【i】【j】= min{ dp【i-1】【k】+(a【k+1】-a【j】)^2 }复杂度m*n^2 斜率优化一下就可以了。
2 3 2 1 2 4 4 2 4 7 10 1
Case 1: 1 Case 2: 18HintThe answer will fit into a 32-bit signed integer.
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=11000; int n,m; int dp[maxn/2][maxn],a[maxn]; int q[maxn],head,tail; int main() { int T_T,cas=1; scanf("%d",&T_T); while(T_T--) { scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) scanf("%d",a+i); sort(a+1,a+n+1); for(int i=1;i<=n;i++) dp[1][i]=(a[i]-a[1])*(a[i]-a[1]); for(int i=2;i<=m;i++) { head=tail=0; q[tail++]=i-1; for(int j=i;j<=n;j++) { while(head+1<tail) { int p1=q[head]; int p2=q[head+1]; int x1=a[p1+1],x2=a[p2+1]; int y1=dp[i-1][p1]+x1*x1; int y2=dp[i-1][p2]+x2*x2; if((y2-y1)<=(x2-x1)*2*a[j]) head++; else break; } int k=q[head]; dp[i][j]=dp[i-1][k]+(a[k+1]-a[j])*(a[k+1]-a[j]); while(head+1<tail) { int p1=q[tail-2],p2=q[tail-1],p3=j; int x1=a[p1+1],x2=a[p2+1],x3=a[p3+1]; int y1=dp[i-1][p1]+x1*x1; int y2=dp[i-1][p2]+x2*x2; int y3=dp[i-1][p3]+x3*x3; if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2)) tail--; else break; } q[tail++]=j; } } printf("Case %d: %d\n",cas++,dp[m][n]); } return 0; }
HDOJ 3480 Division,布布扣,bubuko.com
原文:http://blog.csdn.net/ck_boss/article/details/38659509