题目
There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
What is the minimum candies you must give?
分析1可以先从左向右遍历一遍,保证如果右边小孩的rating大于左边邻居小孩,那么右边小孩的糖果也会多一个。
再从右向左遍历一遍,保证如果左边小孩的rating大于右边邻居小孩,那么左边小孩的糖果要更大(多一个或本来就比右边小孩大)。
通过两轮遍历,保证了每个孩子的糖果数和邻居相比都符合题目要求。
这种做法的时间复杂度O(N),空间复杂度O(N)。
解法1
public class Candy { public int candy(int[] ratings) { if (ratings == null || ratings.length <= 0) { return 0; } int ret = 0; int N = ratings.length; int[] candy = new int[N]; candy[0] = 1; for (int i = 1; i < N; ++i) { candy[i] = 1; if (ratings[i] > ratings[i - 1]) { candy[i] = candy[i - 1] + 1; } } ret = candy[N - 1]; for (int i = N - 2; i >= 0; --i) { if (ratings[i] > ratings[i + 1]) { candy[i] = Math.max(candy[i], candy[i + 1] + 1); } ret += candy[i]; } return ret; } }分析2
还有一种只需要遍历一轮,并且空间复杂度O(1)的解法。
在遍历过程中,通过纪录每个递减序列的大小和该序列中的最大糖果数,来不断更新总的糖果数。
具体解释可以看http://oj.leetcode.com/discuss/76/does-anyone-have-a-better-idea这个链接中的best answer。
解法2
public class Candy { public int candy(int[] ratings) { if (ratings == null || ratings.length <= 0) { return 0; } int ret = 1; int seqLen = 0; int preCandyCount = 1; int maxCountInSeq = preCandyCount; for (int i = 1; i < ratings.length; ++i) { if (ratings[i] < ratings[i - 1]) { ++seqLen; if (maxCountInSeq == seqLen) { ++seqLen; } ret += seqLen; preCandyCount = 1; } else { if (ratings[i] > ratings[i - 1]) { ++preCandyCount; } else { preCandyCount = 1; } ret += preCandyCount; seqLen = 0; maxCountInSeq = preCandyCount; } } return ret; } }
DFSClient技术内幕 (DFSClient介绍以及其初始化)
原文:http://blog.csdn.net/u013494310/article/details/19236859