首页 > 其他 > 详细

不用旋转的Treap -- fhq treap

时间:2019-09-17 23:19:43      阅读:98      评论:0      收藏:0      [点我收藏+]

其实二叉平衡树就是通过各种奇异的操作从而维持二叉树的平衡

fhq Treap特殊就特殊在它并没有像其他性能非常优越的平衡二叉树一样是通过旋转从而实现二叉树的平衡

 

fhq Treap的核心操作其实就两个 ----  分裂 和 合并

 

分裂

分裂就是把一棵二叉平衡树 分成两个二叉平衡树, 左边的二叉平衡树的所有点的权值都 < 右边二叉平衡树所有点的权值

分裂的方式有两种 : 

1、 按值分裂

2、按排名分裂

 

这里先讲按值分裂:

如果我们遍历到的当前这个结点的值 <= val ,那么我们就把这个结点放入左边的树 。

如果当前这个结点的值 > val , 那么我们就把这个结点放入右边的树

 

这里采用传入引用的写法更为简单,x 和 y分别代表分裂出来的两个树的根结点

技术分享图片

 

 

 

 1 void split(int now,int val,int &x,int &y){
 2     if (!now)
 3         x = y = 0;
 4     else {
 5         if (fhq[now].val <= val ) {
 6             x = now;
 7             split(fhq[now].r,val,fhq[now].r,y);
 8         }
 9         else {
10             y = now;
11             split(fhq[now].l,val,x,fhq[now].l);
12         }
13         update(now);
14     }
15 }

 

合并

合并的话 我们要严格保证x  < y 

并且我们规定了 父亲结点优先级 > 孩子结点的优先级

 

 1 int merge(int x,int y) {
 2     if (!x || !y)
 3         return x+y;
 4     if (fhq[x].key > fhq[y].key) {
 5         fhq[x].r = merge(fhq[x].r,y);
 6         update(x);
 7         return x;
 8     }
 9     else {
10         fhq[y].l = merge(x,fhq[y].l);
11         update(y);
12         return y;
13     }
14 }

 

删除:

假设我们要删除权值为 val 的这个结点

那么我们首先把树 分成 <= val  和   > val  的两棵树 x 和 z

然后我们再把 x 这个树分为 <= val-1 和 == val 的两棵树 x 和 y

然后我们在把 y 这个树的根结点去掉就好了。

最后合并 x 和 y   ,再和 z 

 

1 void del(int val) {
2     split(root,val,x,z);
3     split(x,val-1,x,y);
4     y = merge(fhq[y].l,fhq[y].r);
5     root = merge(merge(x,y),z);
6 }

 

 

求前驱、后继 

求x的前驱的定义是: 小于x的最大的数 

那么我们可以把树分成两棵 : 一棵 <= val-1  另一棵 > val -1 ,因为是找最大的数所以我们不断的遍历x这个树的右子树就可以了

 

求x的后继的定义是: 大于x的最小的数

那么我们可以把树分成两棵: 一棵  <= val    另一棵 > val ,因为我们是最小的数 所以我们不断的遍历y这个树的左子树就可以了

 

求排第几名、排第几名的数是哪个

直接看代码就好了,思想也非常的简单

 

 

完整模版代码:

  1 #include <stdio.h>
  2 #include <iostream>
  3 #include <string.h>
  4 #include <random>
  5 
  6 const int maxn = 1e5 + 10;
  7 
  8 struct Node {
  9     int l,r;
 10     int val,key;
 11     int size;
 12 }fhq[maxn];
 13 
 14 int cnt,root;
 15 
 16 std::mt19937 rnd(233);
 17 
 18 int newnode(int val){
 19     fhq[++cnt].val = val;
 20     fhq[cnt].key = rnd();
 21     fhq[cnt].size = 1;
 22     return cnt;
 23 }
 24 
 25 void update(int now){
 26     fhq[now].size = fhq[fhq[now].l].size + fhq[fhq[now].r].size + 1;
 27 }
 28 
 29 void split(int now,int val,int &x,int &y){
 30     if (!now)
 31         x = y = 0;
 32     else {
 33         if (fhq[now].val <= val ) {
 34             x = now;
 35             split(fhq[now].r,val,fhq[now].r,y);
 36         }
 37         else {
 38             y = now;
 39             split(fhq[now].l,val,x,fhq[now].l);
 40         }
 41         update(now);
 42     }
 43 }
 44 
 45 int merge(int x,int y) {
 46     if (!x || !y)
 47         return x+y;
 48     if (fhq[x].key > fhq[y].key) {
 49         fhq[x].r = merge(fhq[x].r,y);
 50         update(x);
 51         return x;
 52     }
 53     else {
 54         fhq[y].l = merge(x,fhq[y].l);
 55         update(y);
 56         return y;
 57     }
 58 }
 59 
 60 int x,y,z;
 61 
 62 void ins(int val) {
 63     split(root,val,x,y);
 64     root = merge(merge(x,newnode(val)),y);
 65 }
 66 
 67 void del(int val) {
 68     split(root,val,x,z);
 69     split(x,val-1,x,y);
 70     y = merge(fhq[y].l,fhq[y].r);
 71     root = merge(merge(x,y),z);
 72 }
 73 
 74 void getrank(int val) {
 75     split(root,val-1,x,y);
 76     printf("%d\n",fhq[x].size + 1);
 77     root = merge(x,y);
 78 }
 79 
 80 void getnum(int rank) {
 81     int now = root;
 82     while (now) {
 83         if (fhq[fhq[now].l].size + 1 == rank)
 84             break;
 85         else if (fhq[fhq[now].l].size >= rank){
 86             now = fhq[now].l;
 87         }
 88         else {
 89             rank -= fhq[fhq[now].l].size + 1;
 90             now = fhq[now].r;
 91         }
 92     }
 93     printf("%d\n",fhq[now].val);
 94 }
 95 
 96 void pre(int val) {
 97     split(root,val-1,x,y);
 98     int now = x;
 99     while (fhq[now].r)
100         now = fhq[now].r;
101     printf("%d\n",fhq[now].val);
102     root = merge(x,y);
103 }
104 
105 void nxt(int val) {
106     split(root,val,x,y);
107     int now = y;
108     while (fhq[now].l)
109         now = fhq[now].l;
110     printf("%d\n",fhq[now].val);
111     root = merge(x,y);
112 }
113 
114 int main() {
115     int t;
116     scanf("%d",&t);
117     while (t--) {
118         int opt,val;
119         scanf("%d%d",&opt,&val);
120         switch (opt) {
121             case 1:
122                 ins(val);
123                 break;
124             case 2:
125                 del(val);
126                 break;
127             case 3:
128                 getrank(val);
129                 break;
130             case 4:
131                 getnum(val);
132                 break;
133             case 5:
134                 pre(val);
135                 break;
136             case 6:
137                 nxt(val);
138                 break;
139         }
140     }
141     return 0;
142 }

 

不用旋转的Treap -- fhq treap

原文:https://www.cnblogs.com/-Ackerman/p/11537567.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!