首页 > 其他 > 详细

tf.concat的用法

时间:2019-09-19 01:15:55      阅读:161      评论:0      收藏:0      [点我收藏+]


import numpy as np
import tensorflow as tf
sess=tf.Session()
a=np.zeros((1,2,3,4))
b=np.ones((1,2,3,4))
c1 = tf.concat([a, b], axis=-1) # 倒数第一维度增加,其它不变
d1=sess.run(c1)
print(‘d1=‘,d1)
print(‘d1.shape=‘,d1.shape)
c = tf.concat([a, b], axis=-2) #倒数第二维度增加,其它不变
d=sess.run(c)
print(‘d=‘,d)
print(‘d.shape=‘,d.shape)
a1=np.zeros((3,4))
b1=np.ones((3,4))
c2 = tf.concat([a1, b1], axis=-1) # 如果是二维就和axis=1一样,第2维坐标增加,就是行不变,列增加
d2=sess.run(c2)
print(‘d2=‘,d2)
print(‘d2.shape=‘,d2.shape)

 

 

 

技术分享图片

 

 技术分享图片

 

tf.concat的用法

原文:https://www.cnblogs.com/tangjunjun/p/11546250.html

(1)
(1)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!