首页 > 其他 > 详细

4.交叉熵

时间:2019-09-22 12:09:27      阅读:68      评论:0      收藏:0      [点我收藏+]
1 import numpy as np
2 from keras.datasets import mnist
3 from keras.utils import np_utils
4 from keras.models import Sequential
5 from keras.layers import Dense
6 from keras.optimizers import SGD
 1 # 载入数据
 2 (x_train,y_train),(x_test,y_test) = mnist.load_data()
 3 # (60000,28,28)
 4 print(x_shape:,x_train.shape)
 5 # (60000)
 6 print(y_shape:,y_train.shape)
 7 # (60000,28,28)->(60000,784)
 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0
 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0
10 # 换one hot格式
11 y_train = np_utils.to_categorical(y_train,num_classes=10)
12 y_test = np_utils.to_categorical(y_test,num_classes=10)
13 
14 # 创建模型,输入784个神经元,输出10个神经元
15 model = Sequential([
16         Dense(units=10,input_dim=784,bias_initializer=one,activation=softmax)
17     ])
18 
19 # 定义优化器
20 sgd = SGD(lr=0.2)
21 
22 # 定义优化器,loss function,训练过程中计算准确率
23 model.compile(
24     optimizer = sgd,
25     loss = categorical_crossentropy,
26     metrics=[accuracy],
27 )
28 
29 # 训练模型
30 model.fit(x_train,y_train,batch_size=32,epochs=10)
31 
32 # 评估模型
33 loss,accuracy = model.evaluate(x_test,y_test)
34 
35 print(\ntest loss,loss)
36 print(accuracy,accuracy)

技术分享图片

4.交叉熵

原文:https://www.cnblogs.com/liuwenhua/p/11566149.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!