首页 > 其他 > 详细

11.模型载入

时间:2019-09-22 13:57:42      阅读:92      评论:0      收藏:0      [点我收藏+]
1 import numpy as np
2 from keras.datasets import mnist
3 from keras.utils import np_utils
4 from keras.models import Sequential
5 from keras.layers import Dense
6 from keras.optimizers import SGD
7 from keras.models import load_model
 1 # 载入数据
 2 (x_train,y_train),(x_test,y_test) = mnist.load_data()
 3 # (60000,28,28)
 4 print(x_shape:,x_train.shape)
 5 # (60000)
 6 print(y_shape:,y_train.shape)
 7 # (60000,28,28)->(60000,784)
 8 x_train = x_train.reshape(x_train.shape[0],-1)/255.0
 9 x_test = x_test.reshape(x_test.shape[0],-1)/255.0
10 # 换one hot格式
11 y_train = np_utils.to_categorical(y_train,num_classes=10)
12 y_test = np_utils.to_categorical(y_test,num_classes=10)
13 
14 # 载入模型
15 model = load_model(model.h5)
16 
17 # 评估模型
18 loss,accuracy = model.evaluate(x_test,y_test)
19 
20 print(\ntest loss,loss)
21 print(accuracy,accuracy)

技术分享图片

# 训练模型
model.fit(x_train,y_train,batch_size=64,epochs=2)

# 评估模型
loss,accuracy = model.evaluate(x_test,y_test)

print(\ntest loss,loss)
print(accuracy,accuracy)

技术分享图片

# 保存参数,载入参数
model.save_weights(my_model_weights.h5)
model.load_weights(my_model_weights.h5)
# 保存网络结构,载入网络结构
from keras.models import model_from_json
json_string = model.to_json()
model = model_from_json(json_string)
print(json_string)

技术分享图片

11.模型载入

原文:https://www.cnblogs.com/liuwenhua/p/11567043.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!