UUID 是 通用唯一识别码(Universally Unique Identifier)的缩写
UUID是128位的全局唯一标识符,通常由32字节的字符串表示。
它可以保证时间和空间的唯一性,也称为GUID,全称为:
UUID —— Universally Unique IDentifier Python 中叫 UUID
GUID —— Globally Unique IDentifier C# 中叫 GUID
它通过MAC地址、时间戳、命名空间、随机数、伪随机数来保证生成ID的唯一性。
UUID主要有五个算法,也就是五种方法来实现:
uuid1()——基于时间戳
由MAC地址、当前时间戳、随机数生成。可以保证全球范围内的唯一性,
但MAC的使用同时带来安全性问题,局域网中可以使用IP来代替MAC。
uuid2()——基于分布式计算环境DCE(Python中没有这个函数)
算法与uuid1相同,不同的是把时间戳的前4位置换为POSIX的UID。
实际中很少用到该方法。
uuid3()——基于名字的MD5散列值
通过计算名字和命名空间的MD5散列值得到,保证了同一命名空间中不同名字的唯一性,
和不同命名空间的唯一性,但同一命名空间的同一名字生成相同的uuid。
uuid4()——基于随机数
由伪随机数得到,有一定的重复概率,该概率可以计算出来。
uuid5()——基于名字的SHA-1散列值
算法与uuid3相同,不同的是使用 Secure Hash Algorithm 1 算法
-- coding: utf-8 --
import uuid
name = "test_name"
print uuid.uuid1() # 带参的方法参见Python Doc
print uuid.uuid3(uuid.NAMESPACE_DNS, name)
print uuid.uuid4()
print uuid.uuid5(uuid.NAMESPACE_DNS, name)
物理层: 将数据转换为可通过物理介质传送的电子信号 相当于邮局中的搬运工人。
数据链路层: 决定访问网络介质的方式。
在此层将数据分帧,并处理流控制。本层指定拓扑结构并提供硬件寻址,相当于邮局中的装拆箱工人。
网络层: 使用权数据路由经过大型网络 相当于邮局中的排序工人。
传输层: 提供终端到终端的可靠连接 相当于公司中跑邮局的送信职员。
会话层: 允许用户使用简单易记的名称建立连接 相当于公司中收寄信、写信封与拆信封的秘书。
表示层: 协商数据交换格式 相当公司中简报老板、替老板写信的助理。
应用层: 用户的应用程序和网络之间的接口。
原文:https://www.cnblogs.com/ma-ming/p/11574024.html