首页 > 其他 > 详细

「CF630C」Lucky Numbers

时间:2019-09-23 22:37:33      阅读:85      评论:0      收藏:0      [点我收藏+]

更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

The numbers of all offices in the new building of the Tax Office of IT City will have lucky numbers.

Lucky number is a number that consists of digits \(7\) and \(8\) only. Find the maximum number of offices in the new building of the Tax Office given that a door-plate can hold a number not longer than \(n\) digits.

Input

The only line of input contains one integer \(n (1 \le n \le 55)\) — the maximum length of a number that a door-plate can hold.

Output

Output one integer — the maximum number of offices, than can have unique lucky numbers not longer than \(n\) digits.

Sample Input

2

Sample Output

6

Solution

题目要我们构造\(1 \sim n\)位由\(7, 8\)的数的个数。我们先来找一找规律:

位数为\(1\)时:有\(7, 8\),共\(2 \times 2 ^ 0 = 2\)种;

位数为\(2\)时:有\(77, 78, 87, 88\),共\(2 \times 2 ^ 1 = 4\)种;

位数为\(3\)时:有\(777, 778, 787, 788, 877, 878, 887, 888\)\(2 \times 2 ^ 2 = 8\)种;

\(\cdots \cdots\)

所以,位数是\(n\)的总个数是\(2 \times 2 ^ {n - 1}\)

那么位数为\(1 \sim n\)的总个数为

\[\begin{aligned} \sum^{n}_{i = 1}{2 \times 2 ^ {i - 1}} & = 2 \times \sum^{n}_{i = 1}{2 ^ {i - 1}} \\\\ & = 2 \times (2 ^ {n} - 2) \\\\ & = 2 ^ {n + 1} - 2\end{aligned}\]

于是就解决了。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>

using namespace std;

typedef long long LL;
LL n;
inline LL power(LL x, LL y) {//求x的y次方
    LL ret = 1;
    for (LL i = 1; i <= y; i++)
        ret *= x;
    return ret;
}
int main() {
    scanf("%lld", &n);
    printf("%lld\n", power(2, n + 1) - 2);//推出来的公式
    return 0;
}

「CF630C」Lucky Numbers

原文:https://www.cnblogs.com/shenxiaohuang/p/11574546.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!