首页 > 其他 > 详细

@codeforces - 1153F@ Serval and Bonus Problem

时间:2019-09-24 22:21:02      阅读:100      评论:0      收藏:0      [点我收藏+]

@description@

从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线段端点将这个线段分成 2*n + 1 个区间。

求这 2*n + 1 个区间中,被随机选择的 n 条线段中的至少 k 条覆盖的,区间的期望长度和。

对 998244353 取模。

Input
第一行三个整数 n, k 与 l (1≤k≤n≤2000, 1≤l≤10^9).

Output
输出一个整数,期望长度和对 998244353 取模的结果。

Examples
Input
1 1 1
Output
332748118

@solution@

首先有一个结论:如果随机将长度为 l 的线段划分成 k 个区间,则每个区间的期望长度为 l/k。(我也不会证)

这样连续期望就可以转为离散期望:
将 2*n 个点分配成 n 个线段,被至少 k 条线段覆盖的段的期望数量。

这样就可以做 dp 了:
定义 g[i][j] 表示前 i 个点已经分配完毕,其中还有 j 个左端点未匹配右端点,的方案数。
g[i][j] 的转移有两类:第 i 个点是左端点;第 i 个点是右端点,此时 j 个左端点都可以作为它的左端点,方案数乘 j。

定义 f[i][j] 表示前 i 个点已经分配完毕,其中还有 j 个左端点未匹配右端点,的被至少 k 条线段覆盖的总数量。
f[i][j] 的转移对应 g[i][j] 的转移也有两类,同时还要讨论 j >= k(i-1 ~ i 这一段是否被至少 k 条线段覆盖)与 j < k。

最后将 f[2*n][0] 除以 g[2*n][0],就得到了离散期望 E。
将 E 乘 l/(2*n + 1) 即可得到答案。

@accepted code@

#include<cstdio>
#include<iostream>
using namespace std;
const int MAXN = 4000;
const int MOD = 998244353;
int pow_mod(int b, int p) {
    int ret = 1;
    while( p ) {
        if( p & 1 ) ret = 1LL*ret*b%MOD;
        b = 1LL*b*b%MOD;
        p >>= 1;
    }
    return ret;
}
int f[MAXN + 5][MAXN + 5], g[MAXN + 5][MAXN + 5];
int main() {
    int n, k, l;
    scanf("%d%d%d", &n, &k, &l);
    l = 1LL*l*pow_mod(2*n + 1, MOD-2)%MOD;
    g[0][0] = 1;
    for(int i=1;i<=2*n;i++) {
        for(int j=0;j<i;j++)
            g[i][j+1] = (g[i][j+1] + g[i-1][j])%MOD;
        for(int j=1;j<=i;j++)
            g[i][j-1] = (g[i][j-1] + 1LL*j*g[i-1][j]%MOD)%MOD;
    }
    for(int i=1;i<=2*n;i++) {
        for(int j=1;j<=i;j++)
            f[i][j-1] = 1LL*j*((f[i-1][j] + 1LL*(j >= k)*g[i-1][j]%MOD)%MOD)%MOD;
        for(int j=0;j<i;j++)
            f[i][j+1] = ((f[i][j+1] + f[i-1][j])%MOD + 1LL*(j >= k)*g[i-1][j]%MOD)%MOD;
    }
    cout << 1LL*f[2*n][0]*l%MOD*pow_mod(g[2*n][0], MOD-2)%MOD << endl;
}

@details@

没什么重要的细节吧。。。

@codeforces - 1153F@ Serval and Bonus Problem

原文:https://www.cnblogs.com/Tiw-Air-OAO/p/11581446.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!