题目:POJ 2533 Longest Ordered Subsequence
Description
#include<iostream> #include<vector> using namespace std; int LIS(vector<int> data) { int length = data.size(),i,j,res = 1; if(length == 0)return 0; vector<int> dp(length,1); for(i = 1; i < length;++i) { for(j = 0;j < i;++j) { if(data[j] < data[i] && dp[j] + 1 > dp[i])dp[i] = dp[j] + 1;//状态转移方程 } if(dp[i] > res)res = dp[i]; } return res; } int main() { int n,i; while(cin >> n) { vector<int> data(n); for(i = 0; i < n;++i)cin >> data[i]; cout << LIS(data) << endl; } return 0; }
#include<iostream> #include<vector> using namespace std; int LIS(vector<int> data) { int length = data.size(),i,j,res = 1; if(length == 0)return 0; vector<int> dp(length,0); dp[0] = data[0]; for(i = 1; i < length;++i) { int left = 0,right = res-1; while(left <= right)//寻找以data[i]结尾的最长递增子序列 { int mid = left + ((right - left) >> 1); if(dp[mid] < data[i])left = mid + 1; else right = mid - 1; } dp[left] = data[i]; //表示data[i]应该放在长度为left+1的子序列的最后一个元素上 if(left >= res)res = left+1;//更新最大长度 } return res; } int main() { int n,i; while(cin >> n) { vector<int> data(n); for(i = 0; i < n;++i)cin >> data[i]; cout << LIS(data) << endl; } return 0; }
原文:http://blog.csdn.net/fangjian1204/article/details/38681269