P(y|X)=P(y)*P(X|y)/P(X)
样本中的属性相互独立;
原问题的等价问题为:
数据处理
为防止P(y)*P(X|y)的值下溢,对原问题取对数,即:
注意:若某属性值在训练集中没有与某个类同时出现过,则直接P(y)或P(X|y)可能为0,这样计算出P(y)*P(X|y)的值为0,没有可比性,且不便于求对数,因此需要对概率值进行“平滑”处理,常用拉普拉斯修正。
先验概率修正:令Dy表示训练集D中第y类样本组合的集合,N表示训练集D中可能的类别数
即每个类别的样本个数都加 1。
类条件概率:另Dy,xi表示Dc中在第 i 个属性上取值为xi的样本组成的集合,Ni表示第 i 个属性可能的取值数
即该类别中第 i 个属性都增加一个样本。
--------------------------------------------------------------
数据预处理
训练模型
测试样本
函数调用
参考
import struct from numpy import * import numpy as np import time def read_image(file_name): #先用二进制方式把文件都读进来 file_handle=open(file_name,"rb") #以二进制打开文档 file_content=file_handle.read() #读取到缓冲区中 offset=0 head = struct.unpack_from(‘>IIII‘, file_content, offset) # 取前4个整数,返回一个元组 offset += struct.calcsize(‘>IIII‘) imgNum = head[1] #图片数 rows = head[2] #宽度 cols = head[3] #高度 images=np.empty((imgNum , 784))#empty,是它所常见的数组内的所有元素均为空,没有实际意义,它是创建数组最快的方法 image_size=rows*cols#单个图片的大小 fmt=‘>‘ + str(image_size) + ‘B‘#单个图片的format for i in range(imgNum): images[i] = np.array(struct.unpack_from(fmt, file_content, offset)) # images[i] = np.array(struct.unpack_from(fmt, file_content, offset)).reshape((rows, cols)) offset += struct.calcsize(fmt) return images #读取标签 def read_label(file_name): file_handle = open(file_name, "rb") # 以二进制打开文档 file_content = file_handle.read() # 读取到缓冲区中 head = struct.unpack_from(‘>II‘, file_content, 0) # 取前2个整数,返回一个元组 offset = struct.calcsize(‘>II‘) labelNum = head[1] # label数 # print(labelNum) bitsString = ‘>‘ + str(labelNum) + ‘B‘ # fmt格式:‘>47040000B‘ label = struct.unpack_from(bitsString, file_content, offset) # 取data数据,返回一个元组 return np.array(label) def loadDataSet(): #mnist train_x_filename="train-images-idx3-ubyte" train_y_filename="train-labels-idx1-ubyte" test_x_filename="t10k-images-idx3-ubyte" test_y_filename="t10k-labels-idx1-ubyte" # #fashion mnist # train_x_filename="fashion-train-images-idx3-ubyte" # train_y_filename="fashion-train-labels-idx1-ubyte" # test_x_filename="fashion-t10k-images-idx3-ubyte" # test_y_filename="fashion-t10k-labels-idx1-ubyte" train_x=read_image(train_x_filename)#60000*784 的矩阵 train_y=read_label(train_y_filename)#60000*1的矩阵 test_x=read_image(test_x_filename)#10000*784 test_y=read_label(test_y_filename)#10000*1 train_x=normalize(train_x) test_x=normalize(test_x) # #调试的时候让速度快点,就先减少数据集大小 # train_x=train_x[0:1000,:] # train_y=train_y[0:1000] # test_x=test_x[0:500,:] # test_y=test_y[0:500] return train_x, test_x, train_y, test_y def normalize(data):#图片像素二值化,变成0-1分布 m=data.shape[0] n=np.array(data).shape[1] for i in range(m): for j in range(n): if data[i,j]!=0: data[i,j]=1 else: data[i,j]=0 return data #(1)计算先验概率及条件概率 def train_model(train_x,train_y,classNum):#classNum是指有10个类别,这里的train_x是已经二值化, m=train_x.shape[0] n=train_x.shape[1] # prior_probability=np.zeros(n)#先验概率 prior_probability=np.zeros(classNum)#先验概率 conditional_probability=np.zeros((classNum,n,2))#条件概率 #计算先验概率和条件概率 for i in range(m):#m是图片数量,共60000张 img=train_x[i]#img是第i个图片,是1*n的行向量 label=train_y[i]#label是第i个图片对应的label prior_probability[label]+=1#统计label类的label数量(p(Y=ck),下标用来存放label,prior_probability[label]除以n就是某个类的先验概率 for j in range(n):#n是特征数,共784个 temp=img[j].astype(int)#img[j]是0.0,放到下标去会显示错误,只能用整数 conditional_probability[label][j][temp] += 1 # conditional_probability[label][j][img[j]]+=1#统计的是类为label的,在每个列中为1或者0的行数为多少,img[j]的值要么就是0要么就是1,计算条件概率 #将概率归到[1.10001] for i in range(classNum): for j in range(n): #经过二值化的图像只有0,1两种取值 pix_0=conditional_probability[i][j][0] pix_1=conditional_probability[i][j][1] #计算0,1像素点对应的条件概率 probability_0=(float(pix_0)/float(pix_0+pix_1))*10000+1 probability_1 = (float(pix_1)/float(pix_0 + pix_1)) * 10000 + 1 conditional_probability[i][j][0]=probability_0 conditional_probability[i][j][1]=probability_1 return prior_probability,conditional_probability #(2)对给定的x,计算先验概率和条件概率的乘积 def cal_probability(img,label,prior_probability,conditional_probability): probability=int(prior_probability[label])#先验概率 n=img.shape[0] # print(n) for i in range(n):#应该是特征数 probability*=int(conditional_probability[label][i][img[i].astype(int)]) return probability #确定实例x的类,相当于argmax def predict(test_x,test_y,prior_probability,conditional_probability):#传进来的test_x或者是train_x都是二值化后的 predict_y=[] m=test_x.shape[0] n=test_x.shape[1] for i in range(m): img=np.array(test_x[i])#img已经是二值化以后的列向量 label=test_y[i] max_label=0 max_probability= cal_probability(img,0,prior_probability,conditional_probability) for j in range(1,10):#从下标为1开始,因为初始值是下标为0 probability=cal_probability(img,j,prior_probability,conditional_probability) if max_probability<probability: max_probability=probability max_label=j predict_y.append(max_label)#用来记录每行最大概率的label return np.array(predict_y) def cal_accuracy(test_y,predict_y): m=test_y.shape[0] errorCount=0.0 for i in range(m): if test_y[i]!=predict_y[i]: errorCount+=1 accuracy=1.0-float(errorCount)/m return accuracy if __name__==‘__main__‘: classNum=10 print("Start reading data...") time1=time.time() train_x, test_x, train_y, test_y=loadDataSet() train_x=normalize(train_x) test_x=normalize(test_x) time2=time.time() print("read data cost",time2-time1,"second") print("start training data...") prior_probability, conditional_probability=train_model(train_x,train_y,classNum) for i in range(classNum): print(prior_probability[i])#输出一下每个标签的总共数量 time3=time.time() print("train data cost",time3-time2,"second") print("start predicting data...") predict_y=predict(test_x,test_y,prior_probability,conditional_probability) time4=time.time() print("predict data cost",time4-time3,"second") print("start calculate accuracy...") acc=cal_accuracy(test_y,predict_y) time5=time.time() print("accuarcy",acc) print("calculate accuarcy cost",time5-time4,"second")
原文:https://www.cnblogs.com/wanglinjie/p/11600994.html