Given n, how many structurally unique BST‘s (binary search trees) that store values 1 ... n?
Example:
Input: 3 Output: 5 Explanation: Given n = 3, there are a total of 5 unique BST‘s: 1 3 3 2 1 \ / / / \ 3 2 1 1 3 2 / / \ 2 1 2 3
class Solution { public int numTrees(int n) { int[] dp = new int[n + 1]; dp[0] = 1; dp[1] = 1; for(int i = 2; i <= n; i++){ for(int j = 1; j <= i; j++){ dp[i] += dp[j-1] * dp[i - j]; } } return dp[n]; } }
自底向上的DP。递推公式下图可以理解,因为F(i, n)表示n个数字且以第i个为根的bst个数,所以两个循环都是小于等于。
求和可从下图理解,本质上是因为,每个数都有资格作为root,所以答案当然要把他们加起来。
96. Unique Binary Search Trees
原文:https://www.cnblogs.com/wentiliangkaihua/p/11601268.html