并不是所有函数都有唯一的极值点,解决方案:
import numpy as np
import matplotlib.pyplot as plt
plot_x=np.linspace(-1,6,141)
plot_x
plot_y=(plot_x-2.5)**2-1
plt.plot(plot_x,plot_y)
plt.show()
def dJ(theta):#求导
return 2*(theta-2.5)
def J(theta): #损失函数
return (theta-2.5)**2-1
def gradient_descent(initial_theta,eta,n_iters=1e4,eps=1e-8):
theta=initial_theta
theta_history.append(initial_theta)
i_iter=0
while i_iter<n_iters:#最多进行n_iters次梯度下降
gradient=dJ(theta)
last_theta=theta
theta=theta-eta*gradient
theta_history.append(theta)
if(abs(J(theta)-J(last_theta))<eps):
break
i_iter+=1
def plot_theta_history():
plt.plot(plot_x,plot_y)
plt.plot(theta_history,J(np.array(theta_history)),color="r",marker="+")
plt.show()
eta=0.01
theta_history=[]
gradient_descent(0,eta)
plot_theta_history()
因为学习率eta过高时,可能会出现无穷大-无穷大的情况,这在python里答案是nan,所以我们要对J()异常处理:
def J(theta):
try:
return (theta-2.5)**2-1.
except:
return float('inf')
试一下eta=1.1:
eta=1.1
theta_history=[]
gradient_descent(0,eta)
theta_history[-1]
可以发现最后一个数是nan
迭代次数取少点,绘制一下图形:
eta=1.1
theta_history=[]
gradient_descent(0,eta,n_iters=10)
plot_theta_history()
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
x=2*np.random.random(size=100) #[0,2]的均匀分布
y=x*3.+4.+np.random.normal(size=100) #默认是列向量
X=x.reshape(-1,1)
plt.scatter(x,y)
plt.show()
def J(theta,X_b,y):
try:
return np.sum((y-X_b.dot(theta))**2)/len(X_b)
except:
return float('inf')
def dJ(theta,X_b,y):
res=np.empty(len(theta))
res[0]=np.sum(X_b.dot(theta)-y)
for i in range(1,len(theta)):
res[i]=(X_b.dot(theta)-y).dot(X_b[:,i])#可以看成先求前面的∑部分,最后再和X的第i列点积
return res*2/len(X_b)
def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e4,eps=1e-8):
theta=initial_theta
i_iter=0
while i_iter<n_iters:#最多进行n_iters次梯度下降
gradient=dJ(theta,X_b,y)
last_theta=theta
theta=theta-eta*gradient
if(abs(J(theta,X_b,y)-J(last_theta,X_b,y))<eps):
break
i_iter+=1
return theta
X_b=np.hstack([np.ones((len(X),1)),X])
initial_theta=np.zeros(X_b.shape[1]) #和X的特征个数相同
eta=0.01
theta=gradient_descent(X_b,y,initial_theta,eta)
上面求到后的式子可以化成矩阵相乘:
图中右下角为最终答案,这是因为Xb是m(样本数)行n(特征值数)列的,所以Xbtheta是m行1列的,即列向量,python中默认是列向量,所以y也是列向量,那么Xb theta - y要转置一下才能变成图中第一行的行向量,最后计算结果还要转置一下才能变成列向量。
添加了梯度下降训练的LinearRegression类:
import numpy as np
from sklearn.metrics import r2_score
class LinearRegression:
def __init__(self):
"""初始化Linear Regression模型"""
self.coef_ = None
self.intercept_ = None
self._theta = None
def fit_normal(self, X_train, y_train):
"""根据训练数据集X_train, y_train训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train"
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_gd(self, X_train, y_train, eta=0.01, n_iters=1e4):
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train"
def J(theta, X_b, y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
except:
return float('inf')
def dJ(theta, X_b, y):
return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)
def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
theta = initial_theta
cur_iter = 0
while cur_iter < n_iters:
gradient = dJ(theta, X_b, y)
last_theta = theta
theta = theta - eta * gradient
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
break
cur_iter += 1
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.zeros(X_b.shape[1])
self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self.intercept_ is not None and self.coef_ is not None, "must fit before predict!"
assert X_predict.shape[1] == len(self.coef_), "the feature number of X_predict must be equal to X_train"
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
return X_b.dot(self._theta)
def score(self, X_test, y_test):
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return r2_score(y_test, y_predict)
def __repr__(self):
return "LinearRegression()"
import numpy as np
from sklearn import datasets
boston=datasets.load_boston()
X=boston.data
y=boston.target
X=X[y<50.0]
y=y[y<50.0]
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666,test_size=0.2)
%run f:\python3玩转机器学习\线性回归\LinearRegression.py
lin_reg1=LinearRegression()
%time lin_reg1.fit_normal(X_train,y_train)
lin_reg1.score(X_test,y_test)
# 梯度下降法
lin_reg2=LinearRegression()
lin_reg2.fit_gd(X_train,y_train)
lin_reg2.coef_
X_train[:10,:]
发现系数都是无穷大,说明学习率太大、训练数据数量级差距太大,导致梯度下降不收敛。
lin_reg2.fit_gd(X_train,y_train,eta=0.000001)
lin_reg2.score(X_test,y_test)#循环次数不够
发现正确率很低,说明可能循环次数不够
%time lin_reg2.fit_gd(X_train,y_train,eta=0.000001,n_iters=1e6)
发现准确率提高了,但太耗时了,得另辟蹊径。
线性回归类中fit_normal采用的是求解正规方程,不涉及搜索的过程,所以不需要数据归一化,时间复杂度O(n^3)。
使用梯度下降法前,最好进行数据归一化。
from sklearn.preprocessing import StandardScaler
standardScaler=StandardScaler()
standardScaler.fit(X_train)
X_train_standard=standardScaler.transform(X_train)
lin_reg3=LinearRegression()
%time lin_reg3.fit_gd(X_train_standard,y_train)
可以发现归一化后训练时间优化了很多。
正确率也和正规方程一致了。
当然,我们可能会发现梯度下降居然比正规方程还慢一点。但是矩阵越大,梯度下降的优势就越强。
m=1000
n=5000
big_X=np.random.normal(size=(m,n)) #正态分布
true_theta=np.random.uniform(0.0,100.0,size=n+1) #n+1个[0,100]的数
big_y=big_X.dot(true_theta[1:])+true_theta[0]+np.random.normal(0.,10.,size=m) #加个均值为0,标准差为10的噪音
big_reg1=LinearRegression()
%time big_reg1.fit_normal(big_X,big_y)
big_reg2=LinearRegression()
%time big_reg2.fit_gd(big_X,big_y)
用精度换时间消耗。
每次随机取一个样本i。
根据模拟退火的思想,学习率要随着迭代次数增加渐渐变小,
来个例子实战一下看看威力!
import numpy as np
import matplotlib.pyplot as plt
m=500000
x=np.random.normal(size=m) #列向量
X=x.reshape(-1,1)
y=4.*x+3.+np.random.normal(0,3,size=m) #加上噪音
def J(theta,X_b,y):
try:
return np.sum((y-X_b.dot(theta))**2)/len(y)
except:
return float('inf')
批量梯度下降:
def dJ(theta,X_b,y):
return X_b.T.dot(X_b.dot(theta)-y)*2/len(y)
def gradient_descent(X_b,y,initial_theta,eta,n_iters=1e4,eps=1e-8):
theta=initial_theta
cur_iter=0
while cur_iter < n_iters:
gradient=dJ(theta,X_b,y)
last_theta=theta
theta=theta-eta*gradient
if(abs(J(theta,X_b,y)-J(last_theta,X_b,y))<eps):
break
cur_iter+=1
return theta
%%time
X_b=np.hstack([np.ones((len(x),1)),X])
initial_theta=np.zeros(X_b.shape[1])
eta=0.01
theta=gradient_descent(X_b,y,initial_theta,eta)
可以看出和我们刚开始设的斜率和截距是差不多的(4,3)
再看看随机梯度下降法:
def dJ_sgd(theta,X_b_i,y_i):
return X_b_i.T.dot(X_b_i.dot(theta)-y_i)*2.
def sgd(X_b,y,initial_theta,n_iters):
t0=1
t1=50
def learning_rate(t):
return t0/(t+t1)
theta=initial_theta
for cur_iter in range(n_iters):
rand_i=np.random.randint(len(X_b))
gradient=dJ_sgd(theta,X_b[rand_i],y[rand_i])
theta=theta-learning_rate(cur_iter)*gradient
return theta
%%time
X_b=np.hstack([np.ones((len(X),1)),X])
initial_theta=np.zeros(X_b.shape[1])
theta=sgd(X_b,y,initial_theta,n_iters=len(X_b)//3) #这里把迭代次数设小一点以看随机梯度下降的威力
可以看出随机梯度下降法的速度快,准确率也不差!
添加了随机梯度下降训练的LinearRegression类:
import numpy as np
from sklearn.metrics import r2_score
class LinearRegression:
def __init__(self):
"""初始化Linear Regression模型"""
self.coef_ = None
self.intercept_ = None
self._theta = None
def fit_normal(self, X_train, y_train):
"""根据训练数据集X_train, y_train训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train"
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_bgd(self, X_train, y_train, eta=0.01, n_iters=1e4):
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train"
def J(theta, X_b, y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
except:
return float('inf')
def dJ(theta, X_b, y):
return X_b.T.dot(X_b.dot(theta) - y) * 2. / len(y)
def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
theta = initial_theta
cur_iter = 0
while cur_iter < n_iters:
gradient = dJ(theta, X_b, y)
last_theta = theta
theta = theta - eta * gradient
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
break
cur_iter += 1
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.zeros(X_b.shape[1])
self._theta = gradient_descent(X_b, y_train, initial_theta, eta, n_iters)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_sgd(self, X_train, y_train, n_iters=50, t0=5, t1=50):
# 此处的n_iters表示整个样本看几次
"""根据训练数据集X_train, y_train, 使用梯度下降法训练Linear Regression模型"""
assert X_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train"
assert n_iters >= 1
def dJ_sgd(theta, X_b_i, y_i):
return X_b_i * (X_b_i.dot(theta) - y_i) * 2.
def sgd(X_b, y, initial_theta, n_iters=5, t0=5, t1=50):
def learning_rate(t):
return t0 / (t + t1)
theta = initial_theta
m = len(X_b)
#以下代码保证每个样本都被遍历n_iters次
for i_iter in range(n_iters):
indexes = np.random.permutation(m)
X_b_new = X_b[indexes,:]
y_new = y[indexes]
for i in range(m):
gradient = dJ_sgd(theta, X_b_new[i], y_new[i])
theta = theta - learning_rate(i_iter * m + i) * gradient
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.random.randn(X_b.shape[1])
self._theta = sgd(X_b, y_train, initial_theta, n_iters, t0, t1)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self.intercept_ is not None and self.coef_ is not None, "must fit before predict!"
assert X_predict.shape[1] == len(self.coef_), "the feature number of X_predict must be equal to X_train"
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
return X_b.dot(self._theta)
def score(self, X_test, y_test):
"""根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
y_predict = self.predict(X_test)
return r2_score(y_test, y_predict)
def __repr__(self):
return "LinearRegression()"
再用波士顿房价的例子测试一下:
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
boston=datasets.load_boston()
X=boston.data
y=boston.target
X=X[y<50.0]
y=y[y<50.0]
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=666,test_size=0.2)
from sklearn.preprocessing import StandardScaler
standardScaler=StandardScaler()
standardScaler.fit(X_train)
X_train_standard=standardScaler.transform(X_train)
X_test_standard=standardScaler.transform(X_test)
%run f:\python3玩转机器学习\线性回归\LinearRegression.py
lin_reg=LinearRegression()
%time lin_reg.fit_sgd(X_train_standard,y_train,n_iters=2)
lin_reg.score(X_test_standard,y_test)
发现准确率和0.81差不多了:
迭代次数调大:
%time lin_reg.fit_sgd(X_train_standard,y_train,n_iters=100)
lin_reg.score(X_test_standard,y_test)
scikit-learn中的随机梯度下降:
from sklearn.linear_model import SGDRegressor
sgd_reg=SGDRegressor()
%time sgd_reg.fit(X_train_standard,y_train)
sgd_reg.score(X_test_standard,y_test)
sgd_reg=SGDRegressor(max_iter=100)
%time sgd_reg.fit(X_train_standard,y_train)
sgd_reg.score(X_test_standard,y_test)
有时候可能梯度求错了但不会报错,这就很坑。
取相邻两个点,这两点的斜率(纵坐标之差/横坐标之差)和切线斜率是差不多的。
对每一个tehta求一遍theta+和theta-,再根据右下角的式子就可以算出这一点切线的斜率,但这样做是非常耗时间的,因此这种方法只适合调试用。
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
X=np.random.random(size=(1000,10))
true_theta = np.arange(1,12,dtype=float)
X_b=np.hstack([np.ones((len(X),1)),X])
y=X_b.dot(true_theta)+np.random.normal(size=1000) #加上噪音
def J(theta,X_b,y):
try:
return np.sum((y-X_b.dot(theta))**2)/len(X_b)
except:
return float('inf')
def dJ_math(theta,X_b,y):#数学推导求导
return X_b.T.dot(X_b.dot(theta)-y)*2./len(y)
def dJ_debug(theta,X_b,y,epsilon=0.01):#调试求导
res=np.empty(len(theta))
for i in range(len(theta)):
theta_1=theta.copy()
theta_1[i]+=epsilon
theta_2=theta.copy()
theta_2[i]-=epsilon
res[i]=(J(theta_1,X_b,y)-J(theta_2,X_b,y))/(2*epsilon)
return res
def gradient_descent(dJ,X_b,y,initial_theta,eta,n_iters=1e4,eps=1e-8):#传入求导方法
theta=initial_theta
cur_iter=0
while cur_iter < n_iters:
gradient=dJ(theta,X_b,y)
last_theta=theta
theta=theta-eta*gradient
if(abs(J(theta,X_b,y)-J(last_theta,X_b,y))<eps):
break
cur_iter+=1
return theta
X_b=np.hstack([np.ones((len(X),1)),X])
initial_theta=np.zeros(X_b.shape[1])
eta=0.01
%time theta=gradient_descent(dJ_debug,X_b,y,initial_theta,eta)
theta
%time theta=gradient_descent(dJ_math,X_b,y,initial_theta,eta)
theta
验证出我们数学推导的求导是正确的。
可以发现调试法求导只用到了J(),所以使用所有的损失函数的,而数学推导求导是根据J()来推导出来的。
随机:
求损失函数J的最大值,可以用梯度上升法:
原文:https://www.cnblogs.com/mcq1999/p/11602085.html