- Jump test
We consoder a function
\[ f_x=\frac{1}{\varepsilon^2 +(x-x_0)^2}
\]
Integrate of this function is
\[
f=-\frac{1}{\varepsilon}arctan( \frac{x_0-x}{\varepsilon})
\]
A good idear for tcest Jang‘s equation is : choice a very small number \(\delta\)
\[
\begin{align}
\delta f &= -\frac{\delta}{\varepsilon}arctan( \frac{x_0-x}{\varepsilon}) \\delta \varepsilon f &=-\delta arctran( \frac{x_0-x}{\varepsilon} )
\end{align}
\]
接着要讨边界条件的设置问题:
对于内侧的 \(\displaystyle \frac{f_x }{ \sqrt{ 1+f_x ^2}}\) 的边界,使用的是 Newmann 边界, 给出的 $\displaystyle \phi^{-2} f_x=\frac{1}{\varepsilon^2 +(x-x_0)^2} $,
所以Newmann 边界条件是这样给出来的
\[\boxed{
f_x= \frac{1}{\varepsilon^2 +(x-x_0)^2} \phi^2}
\]
对于外侧的,使用的 Dirichlet 边界条件,
\[
\begin{align}
\kappa(r)&=\frac{\frac{f_r}{\phi ^2} }{\sqrt{\frac{f_r^2}{\phi ^4}+1}}\ H(r)&=-\frac{1}{r^2 \phi^6 }( r^2 \phi^4 \frac{\frac{f_r}{\phi ^2} }{\sqrt{\frac{f_r^2}{\phi ^4}+1}})_{,r}\ &= -\frac{1}{r^2 \phi^6 }( r^2\phi^4\kappa(r))_{,r} \ \end{align}
\]
实际上使用的是
\[
\boxed{ r^2\phi^4(r) \kappa(r)}
\]
的边界值函数。
Jump Test
原文:https://www.cnblogs.com/yuewen-chen/p/11602492.html