首页 > 其他 > 详细

deep_learning_凹凸函数

时间:2019-09-28 15:07:34      阅读:101      评论:0      收藏:0      [点我收藏+]

t元j

一、什么是凸函数

 对于一元函数f(xf(x),如果对于任意t?[0,1]t?[0,1]均满足:f(tx1+(1t)x2)tf(x1)+(1t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数(convex function)

 如果对于任意t?(0,1)t?(0,1)均满足:f(tx1+(1t)x2)<tf(x1)+(1t)f(x2)f(tx1+(1−t)x2)<tf(x1)+(1−t)f(x2),则称f(x)f(x)为严格凸函数(convex function)

 我们可以从几何上直观地理解凸函数的特点,凸函数的割线在函数曲线的上方,如图1所示:

技术分享图片

 上面的公式,完全可以推广到多元函数。在数据科学的模型求解中,如果优化的目标函数是凸函数,则局部极小值就是全局最小值。这也意味着我们求得的模型是全局最优的,不会陷入到局部最优值。例如支持向量机的目标函数||w||2/2||w||2/2就是一个凸函数。

 

二、如何来判断一个函数是否是凸函数呢?

 对于一元函数f(x)f(x),我们可以通过其二阶导数f′′(x)f″(x) 的符号来判断。如果函数的二阶导数总是非负,即f′′(x)0f″(x)≥0 ,则f(x)f(x)是凸函数

 对于多元函数f(X)f(X),我们可以通过其Hessian矩阵(Hessian矩阵是由多元函数的二阶导数组成的方阵)的正定性来判断。如果Hessian矩阵是半正定矩阵,则是f(X)f(X)凸函数

 

三、Jensen不等式

 对于凸函数,我们可以推广出一个重要的不等式,即Jensen不等式。如果 f 是凸函数,X是随机变量,那么f(E(X))E(f(X))f(E(X))≤E(f(X)),上式就是Jensen不等式的一般形式

 我们还可以看它的另一种描述。假设有 n 个样本{x1,x2,...,xn}{x1,x2,...,xn}和对应的权重{α1,α2,...,αn}{α1,α2,...,αn},权重满足ai?0,αi=1ai?0,∑αi=1,对于凸函数 f,以下不等式成立:

      f(ni=1αixi)ni=1αif(xi)

 

转自:https://www.cnblogs.com/always-fight/p/9377554.html

deep_learning_凹凸函数

原文:https://www.cnblogs.com/0405mxh/p/11603055.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!