首页 > 其他 > 详细

pytorch note

时间:2019-09-29 12:18:49      阅读:62      评论:0      收藏:0      [点我收藏+]

1.模型保存与加载

1.1

#a、保存 推荐仅仅保存模型的state_dict
torch.save(model.state_dict(), MODELPATH) # .pt  .pth
#b、加载
model = TheModelClass(*args, **kwargs)
model.load_state_dict(torch.load(PATH))
model.eval()
#Pytorch保存的模型后缀一般是.pt或者.pth
#必须在加载模型后调用model.eval函数来将dropout及批归一化层设置为预测模式。如果不这么做结果出错。

1.2 a、保存临时模型用于预测或再训练

torch.save({
 'epoch': epoch,
 'model_state_dict': model.state_dict(),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': loss, ... },
 PATH)

当保存一个临时模型用于预测或再训练时,需要保存比state_dict更多的参数。包括优化器的state_dict,迭代次数epoch,最后一层迭代的loss及其他任何需要的参数。
?当保存多个组件时,将多个组件以字典的形式组织,然后用torch.savee()来序列化该字典。在Pytorch中常用.tar文件后缀表示这种模型。
b、加载

model = TheModelClass(*args, **kwargs) 
optimizer = TheOptimizerClass(*args, **kwargs)
 checkpoint = torch.load(PATH)
 model.load_state_dict(checkpoint['model_state_dict'])
 optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
 epoch = checkpoint['epoch']
 loss = checkpoint['loss']
 model.eval() #预测 # - or - model.train() #再训练

e.g.

save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': model.state_dict(),
                'lr': args.lr,
                'optimizer' : optimizer.state_dict(),
            }, checkpoint=args.checkpoint)

pytorch note

原文:https://www.cnblogs.com/yanghailin/p/11607080.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!