首页 > 其他 > 详细

剑指offer 9-10:青蛙跳台阶与Fibonacii数列

时间:2019-09-30 00:47:06      阅读:129      评论:0      收藏:0      [点我收藏+]

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

问题分析

我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n)。首先从第一级开始,当n=1时,只有一种跳法,即f(1)=1。当有两级台阶时,有两种跳法,跳两个一阶,或直接跳两阶,共有两种解法,即f(n)=2。

当n>2时,对于n级台阶而言,每次只能选跳一阶或者二阶中的一种,无论是哪一种,都只有唯一的选择。故当跳一阶的时候,跳法和f(n-1)的跳法个数相同,当跳二阶的时候,跳法个数和f(n-2)的个数相同。从

而对于跳n阶台阶的解法满足f(n)=f(n-1)+f(n-2)

对于这个计算公式,大家有没有很熟悉。没错这就是斐波那契数列的计算公式,跳台阶问题就是斐波那契数列问题的一个变种,只不过起始条件稍有变化,通常推荐使用循环来实现fibonacci数列。

下面给出该问题的C++实现:

class Solution {
public:
    int jumpFloor(int number) {
        //斐波那契数列问题的扩展
        if(number<=0){ //非法输入检测
            return 0;
        }else if(number<=2){  //起始一级和两级台阶
            return number;   
        }
        int pre_2=1,pre_1=2,curr=0;
        for(int i= 3;i<=number;i++){ //使用循环求解斐波那契数列
            curr=pre_2+pre_1;
            pre_2=pre_1;
            pre_1=curr;
        }
        return curr;
    }
};

 刷题,只为了不给自己留遗憾!------haozi

剑指offer 9-10:青蛙跳台阶与Fibonacii数列

原文:https://www.cnblogs.com/fancy-li/p/11610510.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!