Bagging就是通过M个弱模型的结果,通过并行集成的方式来获得最终结果。因为M个数据集是相互独立的,因此这M个弱模型之间也是相互独立的,在最终的集成结果时,每个模型的权重是一样的。这是和Boosting所不同的。
每个模型的重要度作为每个模型结果的权重,然后加权计算得出结果。
可以看出Boosting中生成多个模型的方式并不是和Bagging一样并行生成,而是串行生成,因此也决定了多个模型结果的集成是串行集成,也就是每个模型的结果权重并不是一样的。如何来调整样本分布以及计算模型的重要度,不同方法有不同的定义,详情参见具体方法。
参考文献:
【1】Machine-Learning-for-Beginner-by-Python3
原文:https://www.cnblogs.com/ceo-python/p/11610575.html