首页 > 数据库技术 > 详细

DBSCAN算法及sklearn实现

时间:2019-10-03 10:40:46      阅读:157      评论:0      收藏:0      [点我收藏+]

基本概念:(Density-Based Spatial Clustering of Application with Noiso)

1.核心对象:

若某个点的密度达到算法设定的阈值则其为核心点。(即r领域内的点数量不小于minPts)

2.ε-领域的距离阈值:

设定的半径r

3.直接密度可达:

若某点p在点q的r领域内,且q是核心点则p-q直接密度可达

4.密度可达:

若有一个点的序列q0、q1、 ...qk,对任意qi-qi-q是直接密度可达的,则称从q0到qk密度可达,这实际上是直接密度可达的"传播"。

5.密度相连:

若从某核心点p出发,点q和点k都是密度可达的,则称点q和点k是密度相连的

6.边界点:

属于某一类的非核心点,不能发展下线了

7.直接密度可达:

若某点p在点q的r领域内,且q是核心点则p-q直接密度可达

8.噪声点:

不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的

9.可视化展示:

A:核心对象

B,C:边界点

N:离群点

技术分享图片

工作流程:

参数D:

输入数据集

参数ε:

指定半径

MinPts:

密度阈值

技术分享图片

半径ε,可以根据K距离来设定:找突变点

K距离:

给定数据集P={p(i);i=0,1...n},计算点P(i)到集合D的子集S中所有点之间的距离,距离按照从小到大的顺序排序,d(k)就被称为k-距离。

MinPts:

k-距离中的k值,一般取得小一些,多次尝试,这儿有个聚类可视化好玩的网址点击这里,可以感受下,挺好玩的。

优势:

不需要指定簇个数

可以发现任意形状的簇

擅长找到离群点(检测任务)

劣势:

高维数据有些困难(可以做降维)

参数难以选择(参数对结果影响非常大)

Sklearn中效率很慢(数据消减策略)

 

DBSCAN算法及sklearn实现

原文:https://www.cnblogs.com/liuwenhua/p/11618927.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!