首页 > 其他 > 详细

定义域值域习题

时间:2019-10-03 17:49:39      阅读:67      评论:0      收藏:0      [点我收藏+]

前言

相关链接

典例剖析

例1【2019贵阳检测】下列函数中,同一个函数的定义域和值域相同的函数是【】

$A.y=\sqrt{x-1}$ $B.y=lnx$ $C.y=\cfrac{1}{3^x-1}$ $D.y=\cfrac{x+1}{x-1}$

分析:对于选项\(A\),函数\(y=\sqrt{x-1}\),由\(x-1\geqslant 0\)得到定义域为\([1,+\infty)\),类比函数\(y=\sqrt{x}\),可知其值域为\([0,+\infty)\);故不选\(A\);

对于选项\(B\),函数\(y=lnx\),定义域为\((0,+\infty)\),值域为\(R\);故不选\(B\);

对于选项\(C\),函数\(y=\cfrac{1}{3^x-1}\),由\(3^x-1\neq 0\)得到\(3^x\neq 1=3^0\),故定义域为\((-\infty,0)\cup (0,+\infty)\),求解值域时可以这样作,令\(3^x-1=t\),则可知\(t>-1\),故原函数的值域等价于求\(y=\cfrac{1}{t}(t>-1)\)的值域,可知其值域为\((-\infty,-1)\cup (0,+\infty)\);故不选\(C\);

对于选项\(D\),函数\(y=y=\cfrac{x+1}{x-1}\),由\(x-1\geqslant 0\)得到定义域为\((-\infty,1)\cup (1,+\infty)\),又\(y=\cfrac{x+1}{x-1}=1+\cfrac{2}{x-1}\),由于\(\cfrac{2}{x-1}\neq 0\),故\(y\neq 1\),可知其值域为\((-\infty,1)\cup (1,+\infty)\),故选\(D\);

定义域值域习题

原文:https://www.cnblogs.com/wanghai0666/p/11620210.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!