首页 > 其他 > 详细

数学模型应用举例

时间:2019-10-03 19:17:32      阅读:72      评论:0      收藏:0      [点我收藏+]

前言

应用举例1

由集合之间的关系求解参数的取值范围模型

案例01【模型】若集合\(B=\{x\mid m+1\leq x\leq 1-2m \}\),集合\(A=\{x\mid -2\leq x\leq 7\}\),若\(A\subsetneqq B\),求实数\(m\)的取值范围。

技术分享图片

分析:自行画出草图可知,先列出条件\(\begin{cases}&m+1\leq-2\\&1-2m \ge 7\end{cases}\),解得\(m\leq -3\)

接下来验证\(m=-3\)是否满足题意。

\(m=-3\)时,\(A=[-2,7]\)\(B=[m+1,1-2m]=[-2,7]\),此时\(A=B\),不满足题意,舍去,

故实数\(m\)的取值范围为\(\{m\mid m<-3\}\)

解后反思:本题目如上处理,则可以避免分类讨论;

模型应用1已知\(“\)命题\(p:(x-m)^2>3(x-m)\)\(”\)\(“\)命题\(q:x^2+3x-4<0\)\(”\)成立的必要不充分条件,则实数\(m\)的取值范围为________. 

【解析】先化简命题\(p\),由\((x-m)^2>3(x-m)\),得到\(x^2-(2m+3)x+m^2+3m>0\)

\(x^2-(2m+3)x+m(m+3)>0\),即\((x-m)[x-(m+3)]>0\)

则有\(p:x>m+3\)\(x<m;q:-4<x<1\)

因为\(p\)\(q\)成立的必要不充分条件,则\(\{x\mid-4<x<1\}\subseteq \{x\mid x>m+3或x<m\}\)

所以\(m+3≤-4\)\(m≥1\),即\(m≤-7\)\(m≥1\)

\(m\)的取值范围为\((-\infty,-7]\cup[1,+\infty)\)

模型应用2已知函数\(f(x)=x^3+\cfrac{3}{2}x^2-6x+1\)在区间\([a,a+1]\)上单调递减,求参数\(a\)的取值范围。

法1:集合法,先用导数的方法求得函数\(f(x)\)的单调递减区间,\(f'(x)=3x^2+3x-6=3(x+2)(x-1)\)

\(f'(x)<0\),解得\(x\in (-2,1)\),即其单调递减区间为\([-2,1]\),此处必须写成闭区间,否则会丢掉参数的个别取值。

而题设又已知函数在\([a,a+1]\)上单调递减,故\([a,a+1]\subseteq [-2,1]\),即问题转化为集合的包含关系问题了。

此时只需要满足\(\left\{\begin{array}{l}{-2\leqslant a}\\{a+1\leqslant 1}\end{array}\right.\),解得\(-2\leqslant a\leqslant 0\)

故参数\(a\)的取值范围为\([-2,0]\)

法2:导数法,由题设可知,\(f'(x)=3x^2+3x-6=3(x+2)(x-1)\),由于函数在区间\([a,a+1]\)上单调递减,

\(f'(x)=3(x+2)(x-1)\leq 0\)在区间\([a,a+1]\)上恒成立,则\(\left\{\begin{array}{l}{f'(a)\leqslant 0}\\{f'(a+1)\leqslant 0}\end{array}\right.\)

\(\left\{\begin{array}{l}{3(a+2)(a-1)\leqslant 0}\\{3(a+3)a\leqslant 0}\end{array}\right.\),解得\(\left\{\begin{array}{l}{-2\leqslant a\leqslant 1}\\{-3\leqslant a\leqslant 0}\end{array}\right.\),则\(a\in [-2,0]\)

应用举例2

模型【求解分段函数方程】【2016第三次全国大联考第15题】已知\(f(x)\)是定义在R上的奇函数,且当\(x<0\)时,\(f(x)=2x-1\),若\(f(a)=3\),求实数\(a\)的值。

分析:先由奇偶性求得\(x>0\)时,\(f(x)=2x+1\)

即得到函数的解析式为\(f(x)=\begin{cases}2x-1&x<0\\0&x=0\\2x+1&x>0\end{cases}\),且已知\(f(a)=3\),求\(a\)的值,

等价转化为三个不等式组 \(\begin{cases}a<0\\2a-1=3\end{cases}\),或\(\begin{cases}a=0\\0=3\end{cases}\),或\(\begin{cases}a>0\\2a+1=3\end{cases}\)

解得\(a=1\)

模型应用1【2020届高三文科数学周末训练2用题】若函数\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\) 则函数\(y=f[f(x)]+1\)的零点的个数为______ 个。

【法1】:从数的角度求解;令\(f(x)=t\),则函数的零点问题转化为方程\(f(t)=-1\)的解的个数问题;

即相当于已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(t)=-1\),求\(t\)的值;

则上述分段函数方程等价于\(\left\{\begin{array}{l}{t\leqslant 0}\\{t+1=-1}\end{array}\right.\)\(\left\{\begin{array}{l}{t> 0}\\{lnt=-1}\end{array}\right.\)

解得\(t=-2\)或者\(t=\cfrac{1}{e}\),即\(f(x)=-2\)或者\(f(x)=\cfrac{1}{e}\),到此题目又可以转化为

已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(x)=-2\),求\(x\)的值;可以仿上求解得到\(2\)\(x\)的值;

或已知\(f(x)=\left\{\begin{array}{l}{x+1,x\leqslant 0}\\{lnx,x>0,}\end{array}\right.\)\(f(x)=\cfrac{1}{e}\),求\(x\)的值;亦可以仿上求解得到\(2\)\(x\)的值;

故所求的零点的个数为\(4\)个。

数学模型应用举例

原文:https://www.cnblogs.com/wanghai0666/p/11392760.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!