Test 1D Degenerate Elliptical equation without Hamilton-Jacobi Part
时间:
2019-10-04 22:08:34
阅读:
63
评论:
收藏:
0
[点我收藏+]
- Test 1D Degenerate Elliptical equation without Hamilton-Jacobi Parti
- 根据上一篇的经验:\(\frac{u_x^2}{1+u_x^2}\) 对初值的选取是很敏感的,建议取消这一项,改成已知部分。
- 以下测试
\[
\begin{align}
u_t &=\frac{u_x}{\sqrt{1+u_x^2}}+S(x)\u_x&=\frac{1}{\varepsilon^2+(x-x_0)^2} \in \{ x_L,x_R\}\\end{align}
\]
where
\[
S(x)=-\frac{1}{\sqrt{\frac{1}{\left(\left(x-x_0\right){}^2+\epsilon ^2\right){}^2}+1} \left(\left(x-x_0\right){}^2+\epsilon ^2\right)}
\]
Test 1D Degenerate Elliptical equation without Hamilton-Jacobi Part
原文:https://www.cnblogs.com/yuewen-chen/p/11623306.html