首先注意到题目中 \(a\) 数组是有序的,那我们只用算有序的方案乘上 \(n!\) 即可。
而此时的答案显然
\[Ans=[x^n](1+x)(1+2x)\dots (1+Ax)=\prod_{i=1}^A(1+ix)\]
取对数把乘法变加法,即
\[
\prod_{i=1}^A(1+ix)=\exp(\sum_{i=1}^A\ln(1+ix))
\]
这里有 \(\ln\) 的展开式
\[
-\ln(1-x)=\sum_{i=1}^\infty\frac{x^i}{i}
\]
故有
\[
\ln(1+ix)\\=\ln(1-(-ix))\\=-\sum_{k=1}^\infty \frac{(-ix)^k}{k}\\=\sum_{k=1}^\infty \frac{(-1)^{k+1}i^k}{k}x^k
\]
则
\[
\sum_{i=1}^A \ln(1+ix)\=\sum_{k=1}^\infty \frac{(-1)^{k+1}\sum_{i=1}^Ai^k}{k}x^k
\]
自然数幂和可以用某种方法(插值、伯努利数之类)算出来。
最后还要多项式 exp,直接 \(O(n^2)\) 算。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 505;
int n, M, P, inv[N], Bo[N], C[N][N], a[N], b[N];
typedef vector<int> poly;
poly F[N];
int calc(const poly&a, int x)
{
int y = 0;
for(int i = a.size() - 1; i >= 0; i --)
y = (1LL * y * x + a[i]) % P;
return y;
}
int main()
{
scanf("%d%d%d",&M,&n,&P);
for(int i = 0; i <= n + 1; i ++)
{
C[i][0] = 1;
for(int j = 1; j <= i; j ++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
inv[1] = 1;
for(int i = 2; i <= n + 1; i ++)
inv[i] = (ll) inv[P % i] * (P - P / i) % P;
Bo[0] = 1;
for(int i = 1; i <= n; i ++)
{
int t = 0;
for(int j = 0; j < i; j ++)
t = (t + (ll)Bo[j] * C[i + 1][j]) % P;
Bo[i] = (ll)(P - inv[i + 1]) * t % P;
}
F[0] = poly{0, 1};
for(int i = 1; i <= n; i ++)
{
F[i].resize(i + 2);
for(int j = 1; j <= i + 1; j ++)
{
F[i][j] = (ll) Bo[i + 1 - j] * C[i + 1][j] % P * inv[i + 1] % P;
if((i + 1 - j) & 1)
F[i][j] = (P - F[i][j]) % P;
}
}
for(int i = 1; i <= n; i ++)
{
a[i] = (ll)inv[i] * calc(F[i], M) % P;
if(~i&1) a[i] = (P - a[i]) % P;
}
for(int i = 1; i <= n; i ++)
a[i - 1] = (ll)i * a[i] % P;
b[0] = 1;
for(int i = 1; i <= n; i ++)
{
for(int j = 0; j < i; j ++)
b[i] = (b[i] + (ll)b[j] * a[i - j - 1]) % P;
b[i] = (ll)b[i] * inv[i] % P;
}
int ans = b[n];
for(int i = 2; i <= n; i ++) ans = (ll)ans * i % P;
printf("%d", ans);
return 0;
}
原文:https://www.cnblogs.com/bestwyj/p/11626804.html