首页 > 其他 > 详细

WENO3

时间:2019-10-06 23:58:50      阅读:130      评论:0      收藏:0      [点我收藏+]
  • WENO3

    \[ \begin{align} \phi^-_{x,i}&=\frac{1}{2h}(\Delta^+\phi_{i-1}+\Delta^+ \phi_i)-\frac{1}{2h}\omega_{-}(\Delta^+ \phi_{i-2}-2\Delta^+\phi_{i-1}+\Delta^+ \phi_i)\\omega^- &=\frac{1}{1+2r^2_{-}}\r_{-} &=\frac{\epsilon+(\Delta^-\Delta^+ \phi_{i-1})^2}{\epsilon+(\Delta^-\Delta^+ \phi_i)^2}\\phi^+_{x,i}&=\frac{1}{2h}(\Delta^+ \phi_{i-1}+\Delta^+\phi_i)-\frac{1}{2h}\omega^+(\Delta^+\phi_{i+1} -2\Delta^+\phi_i+\Delta^+\phi_{i-1})\\omega_{+} &=\frac{1}{1+2r^2_{+}}\r_{+} &=\frac{\epsilon+(\Delta^-\Delta^+ \phi_{i+1})^2}{\epsilon+(\Delta^-\Delta^+ \phi_{i})^2} \end{align} \]
  • 1D WENO Type Extrapolation
    Assume that we have a stencil of three points \(x_0=0,x_1=h,x_2=2h\) with point values \(u_j,j=0,1,2\), We aim to obtain a \(3-k\)th order approximation of
    \(\displaystyle \frac{d^k u}{dx^k}|_{x=-h/2},k=0,1,2\) denoted by $ u^{*k}$. We have three candidate substencils given by
    \[S_r=\{x_0,..x_r\},r=0,1,2\]
    On each stencil \(S_r\) we have a \(r\) degree \(p_r(x)\)
    \[ \begin{align} p_0(x) &=u_0\ p_1(x) &=u_0+\frac{1}{h} x(u_1-u_0)\ p_2(x) &=u_0+\frac{1}{2h}x(-3u_0+4u_1-u_2)+\frac{1}{2h^2}x^2(u_0-2u_1+u_2) \end{align} \]
    Suppose \(u(x)\) is smooth on \(S_r\), the \(u^{*k}\) can be extrapolated by
    \[ \begin{align} u^{*k} &=\sum^2_{r=0}d_rp^{(k)}(x)|_{x=\frac{-h}{2}}\ d_0 &=h^2 \ d_1 &=h\ d_2 &=1-h-h^2 \end{align} \]
    We now look for WENO type extrapolation in the form
    \[ \begin{align} u^{*k} &=\sum^2_{r=0}\omega_rp_r^{(k)}(x)|_{x=\frac{-h}{2}}\ \beta_0 &=h^2\ \beta_1 &=\sum_{i=1}^2 \int_{-h}^0 h^{(2i-1)}(p^{(i)}_1(x))^2 dx=(u_1-u_0)^2 \ \beta_2 &=\sum_{i=1}^2 \int_{-h}^0 h^{(2i-1)}(p^{(i)}_2(x))^2 dx\ &=\frac{1}{12}(61u_0^2+160u_1^2+74u_0u_2+25u_2^2-196u_0u_1+124u_1u_2)\ \alpha_r&=\frac{d_r}{(\epsilon+\beta_r)^2}\ \omega_r&=\frac{\alpha_r}{\sum^2_{s=0} \alpha_s}\ d_0 &=h^2 \ d_1 &=h\ d_2 &=1-h-h^2 \end{align} \]

WENO3

原文:https://www.cnblogs.com/yuewen-chen/p/11628976.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!