思路:观察到R的个数比O多4个,且序列中不可能出现OO,且会有四个RR,然后两个相邻的RR边之间有序列“OROROR....RORO”,一共会有(n+4)/2个R和(n-4)/2个O,根据R比O 多4个可以推出
设:d(i,j,k)表示有i个R其中有j对相邻的R,第一个元素是k,答案是:
d{(n+4)/2,3}+d{(n+4)/2,4,0}+d{(n+4)/2,4,1},且 d(i,j,k)=d(i-1,j-1,k)+d(i-1,j,k)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1005;
long long d[MAXN][5][2],ans[MAXN];
int main(){
memset(d,0,sizeof(d));
for (int k = 0; k < 2; k++){
d[1][0][k] = 1;
for (int i = 2; i <= MAXN; i++)
for (int j = 0; j < 5; j++){
d[i][j][k] = d[i-1][j][k];
if (j > 0)
d[i][j][k] += d[i-1][j-1][k];
}
}
memset(ans,0,sizeof(ans));
for (int i = 1; i <= MAXN; i++){
if (i < 4 || i%2 == 1)
continue;
int r = (i+4)/2;
ans[i] = d[r][3][0] + d[r][4][0] + d[r][4][1];
}
int n,cas=1;
while (scanf("%d",&n) != EOF && n)
printf("Case %d: %lld\n",cas++,ans[n]);
return 0;
}原文:http://blog.csdn.net/u011345136/article/details/19247047