(当时让这道sb题卡住了,我比sb还sb)
题意:
n个东西,两个人轮流取,每次可以取走1个,2个或k个,不能取的人输,求谁必胜。
$0\leq n \leq 10^{9},3\leq k \leq 10^{9}$
题解:
假如没有这个k,显然如果n是3的倍数则后手赢,否则先手赢。
操作方法就是某一个人永远保证$n\equiv 0(mod 3)$
那么这个题的思考方式就是:
代码:
#include<bits/stdc++.h> #define maxn 100005 #define maxm 500005 #define inf 0x7fffffff #define ll long long using namespace std; int N,K; inline int read(){ int x=0,f=1; char c=getchar(); for(;!isdigit(c);c=getchar()) if(c==‘-‘) f=-1; for(;isdigit(c);c=getchar()) x=x*10+c-‘0‘; return x*f; } int main(){ int T=read(); while(T--){ N=read(),K=read(); if(K%3==0) N%=(K+1); if((N+1)%3==1 && N!=K) printf("Bob\n"); else printf("Alice\n"); } return 0; }
原文:https://www.cnblogs.com/YSFAC/p/11665510.html