题意:
输入一个素数p和一个字符串s(只包含小写字母和‘*’),字符串中每个字符对应一个数字,‘*‘对应0,‘a’对应1,‘b’对应2....
例如str[] = "abc", 那么说明 n=3, 字符串所对应的数列为1, 2, 3。
题目中定义了一个函数:
a0*1^0 + a1*1^1+a2*1^2+........+an-1*1^(n-1) = f(1)(mod p), f(1) = str[0] = a = 1;
a0*2^0 + a1*2^1+a2*2^2+........+an-1*2^(n-1) = f(2) (mod p) , f(2) = str[1] = b = 2;
..........
a0*n^0 + a1*n^1+a2*n^2+........+an-1*n^(n-1) = f(n) (mod p) ,f(n) = str[n-1] = ````
求出 a0,a1,a2....an-1.
感谢大神翻译。
分析:
除了题意有点难懂以外,没有什么,就是给了一个一个含有n个方程n个未知数的线性方程组,让求解。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <algorithm> 7 #define LL __int64 8 const int maxn = 70+10; 9 const int INF = 1<<28; 10 using namespace std; 11 int equ, var, fn; 12 int a[maxn][maxn], x[maxn]; 13 bool free_x[maxn]; 14 15 int gcd(int a, int b) 16 { 17 return b==0?a:gcd(b, a%b); 18 } 19 int lcm(int a, int b) 20 { 21 return a*b/gcd(a, b); 22 } 23 int Gauss(int x_mo) 24 { 25 //int x_mo; 26 //x_mo = 7; 27 int i, j, k, max_r, col; 28 int ta, tb, LCM, tmp, fx_num; 29 int free_index; 30 col = 0; 31 32 for(k = 0; k<equ && col<var; k++, col++) 33 { 34 max_r = k; 35 for(i = k+1; i < equ; i++) 36 if(abs(a[i][col])>abs(a[max_r][col])) 37 max_r = i; 38 39 if(max_r != k) 40 for(j = k; j < var+1; j++) 41 swap(a[k][j], a[max_r][j]); 42 43 if(a[k][col]==0) 44 { 45 k--; 46 continue; 47 } 48 for(i = k+1; i < equ; i++) 49 { 50 if(a[i][col] != 0) 51 { 52 LCM = lcm(abs(a[i][col]), abs(a[k][col])); 53 ta = LCM/abs(a[i][col]); 54 tb= LCM/abs(a[k][col]); 55 if(a[i][col]*a[k][col] < 0) tb = -tb; 56 57 for(j = col; j < var+1; j++) 58 a[i][j] = ((a[i][j]*ta - a[k][j]*tb)%x_mo+x_mo)%x_mo; 59 } 60 } 61 } 62 for(i = var-1; i >= 0; i--) 63 { 64 tmp = a[i][var]; 65 for(j = i+1; j < var; j++) 66 if(a[i][j] != 0) 67 tmp = ((tmp-a[i][j]*x[j])%x_mo+x_mo)%x_mo; 68 69 if(a[i][i]==0) 70 x[i] = 0; 71 else 72 { 73 //if(tmp%a[i][i] != 0) return -2; 74 while(tmp%a[i][i]!=0) tmp += x_mo; 75 x[i] = (tmp/a[i][i])%x_mo; 76 } 77 } 78 return 0; 79 } 80 int check(char ch) 81 { 82 if(ch==‘*‘) return 0; 83 return ch-‘a‘+1; 84 } 85 int Pow(int tmp, int j, int x_mo) 86 { 87 int sum = 1; 88 tmp %= x_mo; 89 for(int i = 1; i <= j; i++) 90 { 91 sum *= tmp; 92 sum %= x_mo; 93 } 94 return sum%x_mo; 95 } 96 int main() 97 { 98 int x_mo, i, j, t, len, n; 99 char s[maxn]; 100 scanf("%d", &t); 101 while(t--) 102 { 103 scanf("%d %s", &x_mo, s); 104 len = strlen(s); 105 n = len; 106 equ = n; var = n; 107 memset(a, 0, sizeof(a)); 108 memset(x, 0, sizeof(x)); 109 for(i = 0; i < n; i++) 110 a[i][n] = (check(s[i]))%x_mo; //按照题目要求 111 for(i = 0; i < n; i++) 112 { 113 int tmp = check(s[i]); 114 for(j = 0; j < n; j++) 115 { 116 a[i][j] = Pow(i+1, j, x_mo); //按照题目要求,由于直接求(i+1)^j会超int所以在计算的时候一直取模 117 } 118 } 119 fn = Gauss(x_mo); 120 for(i = 0; i < n; i++) 121 { 122 if(i == n-1) printf("%d\n", x[i]); 123 else printf("%d ", x[i]); 124 } 125 } 126 return 0; 127 }
POJ 2065 SETI (高斯消元 取模),布布扣,bubuko.com
原文:http://www.cnblogs.com/bfshm/p/3925369.html