首页 > 其他 > 详细

【CSP-S膜你考】即时战略

时间:2019-10-13 22:46:32      阅读:90      评论:0      收藏:0      [点我收藏+]

Problem B. 即时战略 (rts.c/cpp/pas)

注意

Input file: rts.in
Output file: rts.out
Time Limit : 2 seconds
Memory Limit: 512 megabytes

题面

$\text{HLY}$在玩一个即时战略$\text{(Real Time Strategy)}$游戏。与大多数同类游戏类似,这个游戏的地图是平面的,并且玩家都有一个基地。

$\text{HLY}$的对手杰哥的基地是一个$w \times h$的矩形。其中矩形的每个格子都有一个建筑,每个建筑都有一个重要度。其中第$i$行第$j$列的格子中的建筑的重要度为$w_{ij}$。

$\text{HLY}$决定轰炸杰哥的基地。他可以选择杰哥基地的任何一个格子释放一个能量为$p$的炸弹。释放以后,这个格子的建筑会受到$p$的摧毁度。炸弹产生的冲击波可以向四个方向扩散,每扩散一格能量值会减少$1$。即释放位置相邻的$4$个格子会受到$p ? 1$的摧毁度,再向外的$8$个格子会受到$p ? 2$的摧毁度 ... 直到能量值减为 $0$ ,形式化的讲,如果在第 $x$ 行第 $y$ 列释放炸弹,那么第 $i$ 行第$ j$ 列的格子受到的摧毁度 $d_{ij} = max(0,p ? (| x ? i | + | y ? j |)) $。

对于每个的格子,杰哥受到的损失即为这个格子的重要度与受到的摧毁度的乘积,即$w_{ij} \times d_{ij}$。

$\text{HLY}$想知道,对于每一种投放炸弹的方案,杰哥受到的最小总损失和最大总损失各为多少,形式化的讲,即为
$$\large \sum_{i=1}^{w}\sum_{j=1}^{h} w_{ij} \times d_{ij}$$
的最小值与最大值。

输入格式

第$1$行三个整数$w,h,p$。
接下来$w$行,每行$h$个整数。从第$2$行开始第$i$行第$j$个整数表示$w_{ij}$。

输出格式

一行两个数,表示杰哥受到的最小总损失和最大总损失,用空格隔开。

样例

$\texttt{input#1}$
3 4 3
9 9 9 1
9 9 1 1
9 1 1 1

$\texttt{output#1}$
10 96

【CSP-S膜你考】即时战略

原文:https://www.cnblogs.com/poi-bolg-poi/p/11668445.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!