首页 > 其他 > 详细

用回溯法求解N皇后和迷宫问题

时间:2014-02-16 15:28:50      阅读:300      评论:0      收藏:0      [点我收藏+]

关于回溯法不再赘述太多,大家移步各种百科,本文介绍两种应用的实现


其典型应用之一: N皇后问题

按皇后摆放规则顺序遍历棋盘依次安放皇后,直到某一个皇后找不到合适的位置时,倒退至上一步,调整上一个皇后位置,如还不满足,继续调整再上一个,依次类推。

上述过程很容易想到用栈实现,其一组特解的代码如下

void search_solution()
{
	struct position tmp;
	int i = 0, j = 0;
	for (; i < N; )
	{
		for (; j < N; j++)
		{
			if (detect(i,j))
			{
				map[i][j] = 1;
				push(i,j);
				break;
			}
		}
		if (j == N)
		{
			tmp = pop();
			i = tmp.i;
			j = tmp.j;
			map[i][j] = 0;
			j++;
		}
		else
		{
			i++;
			j = 0;
		}
	}
}

要找出所有解,在找到一组解后(遍历到最后一行满足条件)不退出,继续出栈,直到栈空(我的程序在设计时,直接指定了空栈时安全退出程序):

void search_all_solution()
{
	struct position tmp;
	int i = 0, j = 0;
	while (1)
	{
		for (; i < N; )
		{
			for (; j < N; j++)
			{
				if (detect(i,j))
				{
					map[i][j] = 1;
					push(i,j);
					break;
				}
			}
			if (j == N)
			{
				tmp = pop();
				i = tmp.i;
				j = tmp.j;
				map[i][j] = 0;
				j++;
			}
			else
			{
				i++;
				j = 0;
			}
		}
		if (i == N)
		{
			count++;
			print_solution();
			tmp = pop();
			i = tmp.i;
			j = tmp.j;
			map[i][j] = 0;
			j++;

		}
	}
}
完整代码如下:

#include<stdio.h>
#include<string.h>

#define N 8
#define MAX_STACK_SIZE 64

struct position
{
	int i, j;
};

int map[N][N];
int empty_flag = 0;
int top = -1;
int count = 0;
struct position stack[MAX_STACK_SIZE];

void push(int i, int j)
{
	top++;
	stack[top].i = i;
	stack[top].j = j;
	empty_flag = 0;
}

struct position pop()
{
	if (top == -1)
	{
		printf("%d solutions\n", count);
		exit(0);
		printf("stack is empty!\n");
		empty_flag = 1;
	}
	return stack[top--];
}

void print_solution()
{
	int i, j;
	for (i = 0; i < N; i++)
	{
		for (j = 0; j < N; j++)
			printf("%2d", map[i][j]);
		printf("\n");
	}
	printf("\n");
}

int detect(int row, int col)
{
	int i = row, j;
	for (j = 0; j < N; j++)
		if (map[i][j])
			return 0;
	j = col;
	for (i = 0; i < N; i++)
		if (map[i][j])
			return 0;
	i = row;
	while (++i < N && ++j < N)
	{
		if (map[i][j])	
			return 0;
	}
	i = row;
	j = col;
	while (--i >= 0 && --j >= 0)
	{
		if (map[i][j])
			return 0;
	}
	i = row;
	j = col;
	while (++i < N && --j >= 0)
	{
		if (map[i][j])
			return 0;
	}
	i = row;
	j = col;
	while (--i >= 0 && ++j < N)
	{
		if (map[i][j])
			return 0;
	}
	return 1;
}

void search_solution()
{
	struct position tmp;
	int i = 0, j = 0;
	for (; i < N; )
	{
		for (; j < N; j++)
		{
			if (detect(i,j))
			{
				map[i][j] = 1;
				push(i,j);
				break;
			}
		}
		if (j == N)
		{
			tmp = pop();
			i = tmp.i;
			j = tmp.j;
			map[i][j] = 0;
			j++;
		}
		else
		{
			i++;
			j = 0;
		}
	}
}

void search_all_solution()
{
	struct position tmp;
	int i = 0, j = 0;
	while (1)
	{
		for (; i < N; )
		{
			for (; j < N; j++)
			{
				if (detect(i,j))
				{
					map[i][j] = 1;
					push(i,j);
					break;
				}
			}
			if (j == N)
			{
				tmp = pop();
				i = tmp.i;
				j = tmp.j;
				map[i][j] = 0;
				j++;
			}
			else
			{
				i++;
				j = 0;
			}
		}
		if (i == N)
		{
			count++;
			print_solution();
			tmp = pop();
			i = tmp.i;
			j = tmp.j;
			map[i][j] = 0;
			j++;

		}
	}
}
int main()
{
	memset(map, 0, sizeof(map));
//	search_solution();
//	print_solution();
	search_all_solution();
	printf("%d solutions\n", count);
	return 0;
}


应用之二: 走迷宫

遇到分岔路口就把分岔的坐标入栈,沿着其中一条走下去,如果无解返回分岔坐标,如此类推:

解释下程序中的矩阵,0表示路,1表示墙,走过的路径用8表示。每走一步打印一次地图可观察到程序的执行情况

#include<stdio.h>
#include<string.h>

#define ROW 7
#define COL 7
#define MAX_STACK_SIZE 32

#define UP		0
#define RIGHT   1
#define DOWN    2
#define LEFT    3

int maze[ROW][COL] = {
					  0,1,0,0,0,1,0,
					  0,1,1,1,0,0,0,
					  0,0,0,1,0,1,0,
					  0,1,1,1,0,1,1,
					  0,0,0,1,0,0,0,
					  0,1,0,1,0,1,0,
					  0,0,0,0,0,1,0,
};

typedef struct Point_tag
{
	int row, col;
}Point;

Point stack[MAX_STACK_SIZE];

int top = -1;
int direction[4] = {0, 0, 0, 0}; //从第一个元素开始,依次标识上(0),右(1),下(2),左(3), 表示方向貌似有更好的方法

void push(Point po)
{
	if (top == MAX_STACK_SIZE - 1)
		printf("stack is full!\n");
	else
		stack[++top] = po; 
}


Point pop()
{
	if (top == -1)
		printf("stack is empty!\n");
	else
		return stack[top--];
}

void print_maze()
{
	int i, j;
	for (i = 0; i < ROW; i++)
	{
		for (j = 0; j < COL; j++)
			printf("%2d", maze[i][j]);
		printf("\n");
	}
	printf("\n");
}

void count_direction(Point po, int current_dir)
{
	if (po.row + 1 < ROW && maze[po.row+1][po.col] != 1 && maze[po.row+1][po.col] != 8 /*&& current_dir != UP*/)
		direction[DOWN] = 1;
	if (po.col + 1 < COL && maze[po.row][po.col+1] != 1 && maze[po.row][po.col+1] != 8 )
		direction[RIGHT] = 1;
	if (po.row - 1 >= 0 && maze[po.row-1][po.col] != 1 && maze[po.row-1][po.col] != 8)
		direction[UP] = 1;
	if (po.col - 1 >= 0 && maze[po.row][po.col-1] != 1 &&  maze[po.row][po.col-1] != 8)
		direction[LEFT] = 1;
}

int num_of_dir()
{
	int i = 0, count = 0;
	for (; i < 4; i++)
		if (direction[i] == 1)
			count++;
	return count;
}

int local_dir()
{
	int i = 0;
	for (; i < 4; i++)
		if (direction[i] == 1)
			return i;
}

void search(Point head , int cur_dir)
{
	int numofdir, next_dir = 0, dir = cur_dir;
	while (1)
	{
		maze[head.row][head.col] = 8;
		count_direction(head, dir);
		numofdir = num_of_dir();
		if (numofdir == 0)
			head = pop();
		else 
		{
			if (numofdir > 1)
				push(head);
			next_dir = local_dir();	
			switch (next_dir)
			{
				case UP: { head.row--; break; }
				case RIGHT: { head.col++; /*dir = RIGHT;*/ break; }
				case DOWN: { head.row++; break; }
				case LEFT: { head.col--; break; }
			}
		}

		memset(direction, 0, sizeof(int) * 4);
		print_maze();
		if (head.row == ROW - 1 && head.col == COL - 1)
		{
			maze[head.row][head.col] = 8;
			print_maze();
			printf("success to escape!\n");
			break;
		}
	}
}

int main()
{
	Point Head = {0, 0};
	int dir = 2;
	search(Head, dir);
	return 0;
}


程序执行情况部分截图:

bubuko.com,布布扣

用回溯法求解N皇后和迷宫问题

原文:http://blog.csdn.net/simon_xia_uestc/article/details/19252957

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!