首页 > 其他 > 详细

KNN-学习笔记

时间:2019-10-17 21:32:22      阅读:72      评论:0      收藏:0      [点我收藏+]

仅供学习使用

练习1

# coding:utf-8
# 2019/10/16 16:49
# huihui
# ref:
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier

iris = datasets.load_iris()
X = iris.data
y = iris.target
print(X, y)

X_train, X_test, y_train, y_test = train_test_split(X, y,random_state=2003)
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train, y_train)

correct = np.count_nonzero((clf.predict(X_test) == y_test) == True)
print("准确率:%.3f" % (correct / len(X_test)))

KNN-学习笔记

原文:https://www.cnblogs.com/xuehuiping/p/11694975.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!