首页 > 其他 > 详细

Normalization的作用,LN,BN,WN

时间:2019-10-18 00:02:47      阅读:60      评论:0      收藏:0      [点我收藏+]

参考资料:https://zhuanlan.zhihu.com/p/33173246?utm_source=wechat_session&utm_medium=social&utm_oi=611573545537507328

一般使用bn的话,对于模型的初始化要求没那么高,但是最终的结果可能没那么好。

1.原始数据需要whitening的原因:

让数据尽可能的保持独立同分布。

1.数据已经正则了为什么还需要各种Normalization

深层训练困难因为数据在过了某些层之后,如果不进行正则的话,每一层更新后上层参数获得的输入分布会再一次变化,高层的数据分布变化的会很厉害,所以参数更新策略很重要。如果每一层的结果都能够进行normalization的话分布相对统一,可以避免每层接收分布不同产生的影响。

Normalization的作用,LN,BN,WN

原文:https://www.cnblogs.com/wb-learn/p/11695609.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!